Nanoröhrchen sollen Bildschirme zum Leuchten bringen

Der von IBM-Deutschland gestiftete Hahn-Meitner-Technologie-Transfer- Preis zeichnet Materialforscher des Hahn-Meitner-Instituts aus. Fünf Forscher haben unter Leitung von Prof. Dr. Alois Weidinger für ihre innovativen - und vermarktungsfähigen - Entwicklungsarbeiten erhalten. Ihre Forschungsergebnisse könnten die Herstellung neuartiger Flachbildschirme, so genannter Feld-Emissions-Displays (FED), entscheidend verbessern.

Der mit 10.000 Mark dotierte und im Abstand von zwei Jahren verliehene Preis wurde am 19. Oktober in Anwesenheit von Berlins Senator für Wissenschaft, Forschung und Kultur, Prof. Christoph Stölzl, und dem Vorsitzenden der Geschäftsführung der IBM-Deutschland GmbH, Erwin Staudt, übergeben.

Flachbildschirme sind dabei, die alten Bildröhren-Monitore ins Museum zu schicken, denn die neuen kleinen Geräte bieten überzeugende praktische Vorteile. Nachteilig sind jedoch vor allem die hohen Kosten, so dass weltweit an neuen Verfahren gearbeitet wird, damit Flachbildschirme billiger und noch besser werden.

Eine technologische Alternative zu den heute üblichen Flüssigkristallanzeigen (LCD) bieten Feld-Emissions-Displays (FED). Mit aktiv leuchtenden Bildpunkten können sie stromsparend ohne Hintergrundbeleuchtung betrieben werden und erlauben zudem einen großen seitlichen Betrachtungswinkel. Ihre Herstellungskosten könnten gegenüber LCD deutlich sinken.

Bei einem Feld-Emissions-Display wird jedes aufleuchtende Farbpixel des Monitors von einem separaten Elektronenstrahl angeregt. Im Spannungsfeld zwischen einer rückseitigen Kathodenplatte und der leuchtenden Frontplatte, an der sich die Anode befindet, entsteht ein Flächenschauer von Elektronenstrahlen. Um die Megapixel der Flachbildschirme einzeln anzusprechen, verwendet man wie bei den LCD ein feines Gitternetz aus gekreuzten elektrischen Leitungsbahnen. Spannungsspitzen an den Kreuzungspunkten des Gitters sind Triggersignale der Leuchtpunkte.

Eine technologische Herausforderung bei Feld-Emissions-Displays ist die Mikrostrukturierung einer geeigneten Kathodenplatte. In einem Areal aus isolierendem Material müssen sich elektrisch aktive Zonen befinden, die fein genug verteilt sind, um das Farbmuster des Bildschirms pixelgenau anzusprechen. Mikroskopisch kleine Entladungsspitzen, die durch Prägemasken lithographisch abgeformt werden, sind hierfür in der Erprobung. Eine weniger aufwendige Alternative könnten nanometerfeine Leitungskanäle sein, die vom atomaren Teilchenschauer einer Beschleunigeranlage erzeugt werden.

Als Ausgangsmaterial hierfür eignet sich eine Kohlenstoffstruktur, die in ihrer atomaren Anordnung dem Diamant ähnelt. Schichten dieses Materials lassen sich heute großflächig durch Abscheideverfahren herstellen. Bei einer Bestrahlung mit energiereichen Ionen entstehen in der nicht-leitenden Matrix graphitische Nanoröhrchen, die feine Leitungskanäle bilden. Die Methode nutzt damit das Phänomen, dass Kohlenstoff je nach seiner atomaren Struktur sowohl ein elektrischer Isolator (Diamant) wie ein elektrischer Leiter (Graphit) sein kann. Die Umwandlung der diamantähnlichen Struktur entlang der Ionenspur geschieht durch ein "Aufschmelzen" aufgrund der hohen Energieübertragung und einer anschließenden Erstarrung in einer graphitischen Struktur.

Der Vorteil dieses Verfahrens gegenüber einer lithographisch erzeugten Kathodenschicht liegt in der einfacheren Herstellung und der höheren Lebensdauer der stromleitenden Stellen. Die Preisträger des Hahn-Meitner-Technologie-Transfer-Preises 2000, Prof. Dr. Alois Weidinger, Dr. Johann Krauser, Dr. Wolfgang Harneit, Markus Waiblinger und Bernd Mertesacker, wollen jetzt in Zusammenarbeit mit der Industrie die Voraussetzungen einer großtechnischen Fertigung klären.

Die insgesamt zwölf Beiträge des Wettbewerbs um den Hahn-Meitner-Technologie-Transfer-Preis 2000 erstrecken sich im wesentlichen über das gesamte Forschungsspektrum des Hahn-Meitner-Instituts und betreffen Ergebnisse von der Solarenergieforschung (Photovoltaik und Brennstoffzellenforschung) bis zur grundlagenorientierten Strukturforschung mit dem Schwerpunkt Neutronenoptik.

  • Link kopieren

Das könnte Sie auch interessieren

  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Willkommen: Ausbildungsstart für 16 junge Menschen
    Nachricht
    03.09.2025
    Willkommen: Ausbildungsstart für 16 junge Menschen
    16 junge Menschen haben am 1. September ihre Ausbildung, ihr Studium oder ein Freiwilliges Jahr am HZB begonnen. Mit einer Begrüßungsveranstaltung, ersten Einblicken in die Forschungswelt und einem Kommunikationsseminar fiel der Startschuss für ihren neuen Lebensabschnitt.