EU-Projekt zu exotischen Eigenschaften von Helium-3-Atomen

Mit einer Förderung von rund einer Million Euro, verteilt über drei Jahre, startet am Hahn-Meitner-Institut ein internationales Grundlagenprojekt, das der weiteren Erforschung der faszinierenden exotischen Eigenschaften des Helium-3 Atoms gilt. Bei den erhofften Ergebnissen geht es sowohl um neue Modelle zur Theorie des Magnetismus als auch um universelle Mechanismen für die treibenden Kräfte sogenannter Phasenübergänge.

Das Besondere des Projekts: Neben der Finanzierung von Experimentiergeräten ist ein hoher Anteil der Projektmittel für Gehälter und gegenseitige Laboraufenthalte junger Nachwuchswissenschaftler vorgesehen. Für Projektleiter Konrad Siemensmeyer steht dabei schon fest, wo die neuen Kompetenzen zu finden sind: "Die Mehrzahl der sechs Doktoranden- und Postdoc-Stellen werden wir sicher mit jungen Wissenschaftlern aus Osteuropa besetzten".

Mit einem Treffen der sieben europäischen Partner am 16. Juni im Hahn-Meitner-Institut Berlin startete jetzt die wissenschaftliche Arbeit. Federführend sind dabei Forschergruppen aus Großbritannien, Frankreich und Deutschland. Die ersten Nachwuchswissenschaftler sollen im September ihre Arbeit aufnehmen. Begleitet wird das Projekt von sogenannten "Sommerschulen", die in unterschiedlichen Ländern den Erfahrungsaustausch junger Wissenschaftler auf eine breitere Basis stellen sollen.

Die Experimente mit Helium-3 Atomen gelten bestimmten inneren Ordnungsmustern, die bei extrem tiefen Temperaturen und hohen Drücken auftreten. Helium ist als Edelgas ein natürlicher Bestandteil der Luft, wo es in Spuren auftritt. Natürlicherweise enthält Heliumgas die Isotope Helium-4 und Helium-3. Beide Isotope sind stabile und chemisch identische Elemente, wobei jedoch das Helium-3, das zwei Protonen und nur ein Neutron im Atomkern enthält, in der Natur nur 0,1 Promille des gesamten Heliums ausmacht.

Bei einer Temperatur von rund minus 268° Celsius wird Helium flüssig. Unter solcher Abkühlung und zusätzlichem hohen Druck erstarrt es auch zu einem Festkörper. Flüssiges Helium-3 hat exotische Eigenschaften, zum Beispiel scheint es keine Schwerkraft zu kennen und kann an Gefäßwänden hinaufkriechen. In dem europäischen Gemeinschaftsprojekt sollen jedoch jetzt die vermuteten besonderen magnetischen Eigenschaften von festem Helium-3 erkundet werden.

Bei den erhofften Ergebnissen geht es sowohl um neue Modelle zur Theorie des Magnetismus als auch um universelle Mechanismen für die treibenden Kräfte sogenannter Phasenübergänge, einer zentralen Erscheinung in der Physik. Die Grundlage hierfür ist die Wechselwirkung physikalischer Kräfte. Über ein Verständnis der sehr speziellen Wechselwirkungen der Atome im festen Helium-3 hoffen die Wissenschaftler verbesserte Modelle der Wechselwirkungen in Vielteilchensystemen zu finden.

Dass die geplanten Experimente anspruchsvoll sind, veranschaulicht bereits ein kleines technisches Detail der Probenkammer: Im Arbeitsbereich extremer Tieftemperaturen und hohem Druck lässt sich für die Probenkammer nur ein aufwendig gefertigtes Sintermaterial aus Platin einsetzen und jede kleine Schwingung würde als Energiezufuhr die Temperatur unzulässig erhöhen. "Hierzu müssen wir", erläutert Siemensmeyer, "schon die minimale Energie eines entfernten Radiosenders abschirmen". Mit der gemeinsamen Kompetenz der internationalen Gruppe hofft man diese Bedingungen am Forschungsreaktor des Hahn-Meitner-Instituts, wo die Experimente mit der Neutronenstrahlung des Großgeräts durchgeführt werden, zu bewältigen. Für junge Wissenschaftler bieten sich dabei hervorragende Bedingungen, um Erfahrungen in einem physikalischen Spitzenprojekt in internationaler Zusammenarbeit zu gewinnen.

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Nachricht
    15.10.2025
    Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).