Der weltweit stärkste Magnet für Neutronenexperimente wird in Berlin errichtet

Modell des Hochfeldmagneten im Maßstab 1:5

Modell des Hochfeldmagneten im Maßstab 1:5

Blick in die Neutronenleiterhalle 2, den zukünftigen Standort des Hochfeldmagneten.

Blick in die Neutronenleiterhalle 2, den zukünftigen Standort des Hochfeldmagneten.

Der Kooperationsvertrag zwischen dem Hahn-Meitner-Institut Berlin (HMI) und dem National High Magnetic Field Laboratory (NHMFL) Tallahassee (Florida State University) zum Bau eines neuen Hochfeldmagneten ist unterzeichnet worden. Er wird der weltweit stärkste Magnet für Neutronenstreuexperimente. Von den Experimenten an dem Magneten erwarten Forscher neue Erkenntnisse zu Fragen aus der Physik, Chemie, Biologie und den Materialwissenschaften, unter anderem Beiträge zum Verständnis der Hochtemperatursupraleitung.

25 Tesla bis zirka 30 Tesla wird der neue Hochfeldmagnet erzeugen, der bis 2011 am HMI entsteht. Das ist etwa eine Million Mal so stark wie das Erdmagnetfeld. Das Tallahassee-Institut wird ihn für etwa 8,7 Millionen Dollar bauen, weitere 10 Millionen Euro kostet die notwendige Infrastruktur, zu der Anlagen für Kühlung und Stromzufuhr gehören. Das insgesamt 17,8 Millionen Euro umfassende Projekt wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung (BMBF) finanziert, den Rest trägt die Senatsverwaltung für Bildung, Wissenschaft und Forschung des Landes Berlin. Es sichert dem HMI seine internationale Spitzenposition, die es auf dem Gebiet der Neutronenforschung kombiniert mit starken Magnetfeldern und tiefen Temperaturen einnimmt.

„Schon jetzt kommen Wissenschaftler aus aller Welt zu uns, weil sie hier mithilfe von Neutronen Materie bei extremen äußeren Bedingungen untersuchen können. Mit dem neuen Magneten können sie Experimente durchführen, die nirgendwo sonst auf der Welt möglich sind“, sagte Professor Michael Steiner, der wissenschaftliche Geschäftsführer des HMI, am Donnerstag in Berlin. Thomas Rachel, Parlamentarischer Staatssekretär im BMBF, sagte auf der Pressekonferenz: „Mit diesem Großgerät wird das Hahn-Meitner-Institut selbst zu einem Magneten, der Forscher aus aller Welt nach Berlin zieht.“ 

Von den Experimenten an dem Magneten erwarten Forscher neue Erkenntnisse zu Fragen aus der Physik, Chemie, Biologie und den Materialwissenschaften, unter anderem Beiträge zum Verständnis der Hochtemperatursupraleitung – der Fähigkeit einzelner Substanzen, Strom schon bei höheren Temperaturen ohne Widerstand zu leiten. 

Um den Magneten zu bauen, müssen die Ingenieure an die Grenze des Machbaren gehen. Sie verwenden im Inneren, wo die Kräfte am stärksten sind, eine Kupferspule. Die äußere, in Reihe geschaltete Spule, besteht aus supraleitendem Material, das mit flüssigem Helium gekühlt wird. Mit dieser so genannten Hybridbauweise können die extremen Felder unter möglichst sparsamem Energieeinsatz erzeugt werden. Außerdem musste eine speziell an den Hochfeldmagneten angepasste Neutroneninstrumentierung entwickelt werden.

Dieses Know-how ist im HMI vorhanden – ein wichtiger Grund, weshalb die Helmholtz-Gemeinschaft dieses Projekt fördert. Professor Jürgen Mlynek, Präsident der Helmholtz-Gemeinschaft, sagte in Berlin: „Das Hahn-Meitner-Institut verfügt über sehr viel Erfahrung beim Betrieb starker Magnete und bei der Entwicklung von Neutronenexperimenten. Auf Grund dieser einzigartigen Expertise wird das Helmholtz-Zentrum auch dieses ehrgeizige Projekt zum Erfolg führen.“

  • Link kopieren

Das könnte Sie auch interessieren

  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 20 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.