Dreidimensionale Bildgebung- erstmalige Einblicke in Magnetfelder

<div class="bildlupe"></div>
<div class="InhaltSpalte Rechts"><a id="c237861" name="c237861"></a>
<p>Auf dem Bild schwebt der Dipolmagnet &uuml;ber einem gek&uuml;hlten Supraleiter, ein aus Yttrium- Barium-Kupferoxid (YBCO) bestehender keramischer Stoff.</p>
</div>

Auf dem Bild schwebt der Dipolmagnet über einem gekühlten Supraleiter, ein aus Yttrium- Barium-Kupferoxid (YBCO) bestehender keramischer Stoff.

<a id="c237841" name="c237841"></a> Die zwei Bilder zeigen das magnetische Feld eines Dipolmagneten, sichtbar gemacht mithilfe von polarisierten Neutronen.

Die zwei Bilder zeigen das magnetische Feld eines Dipolmagneten, sichtbar gemacht mithilfe von polarisierten Neutronen.

3D-Bilder werden nicht nur in der Medizin erzeugt, etwa mithilfe der Röntgen- oder Kernspinresonanztomographie. Auch Materialwissenschaftler blicken gern ins Innere eines Körpers. Forschern des Berliner Hahn-Meitner-Instituts (HMI) ist es nun in Kooperation mit der Technischen Fachhochschule Berlin (TFH) erstmals gelungen, Magnetfelder im Inneren von massiven, nicht transparenten Materialien dreidimensional darzustellen. Das berichten Nikolay Kardjilov und Kollegen in der aktuellen Ausgabe der Zeitschrift Nature Physics, die eine Online-Version als Highlight-Beitrag in dieser Woche vorab veröffentlicht.

Die Forscher der Abteilung Imaging haben dafür die Neutronentomographie genutzt. Neutronen, das sind elektrisch ungeladene Elementarteilchen, besitzen ein so genanntes magnetisches Moment und sind daher besonders geeignet, um Phänomene wie den Mag-netismus zu untersuchen. Sie verhalten sich im Magnetfeld ähnlich wie Kompassnadeln, das heißt, sie führen kleine Kreiselbewegungen um die Achse eines angelegten Magnet-feldes aus. Physiker sprechen vom Neutronenspin. Dieser kann polarisiert werden. Das heißt, alle Kompassnadeln richten sich gleichmäßig zum Magnetfeld aus. Wird eine Probe mit derartigen spinpolarisierten Neutronen bestrahlt, ändert sich der Drehwinkel der kleinen Kreisel, ihre Spinrotation.

Die Gruppe um Kardjilov hat dies als Messparameter für die Tomographie-Experimente genutzt. Sie haben Apparaturen entwickelt, so genannte Analysatoren, die nur Neutronen mit einer bestimmten Drehrichtung passieren lassen. Damit wird das Bild erzeugt. Kardjilov erläutert dies im Vergleich zu einer medizinischen CT-Aufnahme: Knochen oder Gewebe lassen beim Bestrahlen mit Röntgenlicht je nach ihrer Dichte die Lichtwellen in unterschiedlicher Intensität passieren. „So ähnlich ist es mit unserer magnetischen Probe, die die Spinrotation der Neutronen ändert“, sagt Nikolay Kardjilov. „Der nachgeschaltete Analysator lässt nur Neutronen mit einem bestimmten Drehspin passieren, dadurch wird der Kontrast erzeugt. Je nachdem, wie die magneti-schen Eigenschaften in der Probe verteilt sind. Wenn man die Probe dabei dreht, erhält man ein 3D-Bild.“

Nikolay Kardjilov hat seit 2005 die Neutronentomographie am HMI aufgebaut, und nun ist seine Gruppe die erste, die die Spinrotation als Messsignal für die Bildgebung verwendet. Normalerweise nutzen Wissenschaftler wie beim Licht die einfache Absorption der Strahlung beziehungsweise die Fähigkeit einer Probe, Strahlung hindurchzulassen. Eine weitere Grundlage für den Erfolg der Experimente waren die Polarisatoren und Analysatoren sowie ortsauflösende Detektoren, die die HMI-Forscher in Eigenentwicklung gebaut haben.

Magnetismus ist eines der zentralen Forschungsfelder am HMI. Für das Verständnis der Hochtemperatursupraleitung ist es zum Beispiel eminent wichtig zu verstehen, wie sich magnetische Flusslinien verteilen und wie man diese Flusslinien im Material festhalten kann. Mit Kardjilovs Experimentaufbau wird es nun unter anderem möglich sein, magnetische Domänen in magnetischen Kristallen dreidimensional zu visualisieren.

Veröffentlichung:

Nikolay Kardjilov, Ingo Manke, Markus Strobl, André Hilger, Wolfgang Treimer, Michael Meissner, Thomas Krist & John Banhart: Three-dimensional imaging of magnetic fields with polarized neutrons, Nature Physics, Published online: 30 March 2008, doi:10.1038/nphys912

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    31.01.2025
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    In der Titelgeschichte stellen wir Astrid Brandt vor. Sie leitet die Nutzerkoordination am Helmholtz-Zentrum Berlin. Mit ihrem Team behält sie stets den Überblick über Anträge, Messzeiten und Publikationen der bis zu 1.000 Gastforschenden, die jedes Jahr zu BESSY II kommen. Naturwissenschaften faszinierten sie schon immer.

    Doch auch ihre zweite Leidenschaft, die Musik, hat sie bis heute nicht losgelassen.

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.