Dreidimensionale Bildgebung- erstmalige Einblicke in Magnetfelder

<div class="bildlupe"></div>
<div class="InhaltSpalte Rechts"><a id="c237861" name="c237861"></a>
<p>Auf dem Bild schwebt der Dipolmagnet &uuml;ber einem gek&uuml;hlten Supraleiter, ein aus Yttrium- Barium-Kupferoxid (YBCO) bestehender keramischer Stoff.</p>
</div>

Auf dem Bild schwebt der Dipolmagnet über einem gekühlten Supraleiter, ein aus Yttrium- Barium-Kupferoxid (YBCO) bestehender keramischer Stoff.

<a id="c237841" name="c237841"></a> Die zwei Bilder zeigen das magnetische Feld eines Dipolmagneten, sichtbar gemacht mithilfe von polarisierten Neutronen.

Die zwei Bilder zeigen das magnetische Feld eines Dipolmagneten, sichtbar gemacht mithilfe von polarisierten Neutronen.

3D-Bilder werden nicht nur in der Medizin erzeugt, etwa mithilfe der Röntgen- oder Kernspinresonanztomographie. Auch Materialwissenschaftler blicken gern ins Innere eines Körpers. Forschern des Berliner Hahn-Meitner-Instituts (HMI) ist es nun in Kooperation mit der Technischen Fachhochschule Berlin (TFH) erstmals gelungen, Magnetfelder im Inneren von massiven, nicht transparenten Materialien dreidimensional darzustellen. Das berichten Nikolay Kardjilov und Kollegen in der aktuellen Ausgabe der Zeitschrift Nature Physics, die eine Online-Version als Highlight-Beitrag in dieser Woche vorab veröffentlicht.

Die Forscher der Abteilung Imaging haben dafür die Neutronentomographie genutzt. Neutronen, das sind elektrisch ungeladene Elementarteilchen, besitzen ein so genanntes magnetisches Moment und sind daher besonders geeignet, um Phänomene wie den Mag-netismus zu untersuchen. Sie verhalten sich im Magnetfeld ähnlich wie Kompassnadeln, das heißt, sie führen kleine Kreiselbewegungen um die Achse eines angelegten Magnet-feldes aus. Physiker sprechen vom Neutronenspin. Dieser kann polarisiert werden. Das heißt, alle Kompassnadeln richten sich gleichmäßig zum Magnetfeld aus. Wird eine Probe mit derartigen spinpolarisierten Neutronen bestrahlt, ändert sich der Drehwinkel der kleinen Kreisel, ihre Spinrotation.

Die Gruppe um Kardjilov hat dies als Messparameter für die Tomographie-Experimente genutzt. Sie haben Apparaturen entwickelt, so genannte Analysatoren, die nur Neutronen mit einer bestimmten Drehrichtung passieren lassen. Damit wird das Bild erzeugt. Kardjilov erläutert dies im Vergleich zu einer medizinischen CT-Aufnahme: Knochen oder Gewebe lassen beim Bestrahlen mit Röntgenlicht je nach ihrer Dichte die Lichtwellen in unterschiedlicher Intensität passieren. „So ähnlich ist es mit unserer magnetischen Probe, die die Spinrotation der Neutronen ändert“, sagt Nikolay Kardjilov. „Der nachgeschaltete Analysator lässt nur Neutronen mit einem bestimmten Drehspin passieren, dadurch wird der Kontrast erzeugt. Je nachdem, wie die magneti-schen Eigenschaften in der Probe verteilt sind. Wenn man die Probe dabei dreht, erhält man ein 3D-Bild.“

Nikolay Kardjilov hat seit 2005 die Neutronentomographie am HMI aufgebaut, und nun ist seine Gruppe die erste, die die Spinrotation als Messsignal für die Bildgebung verwendet. Normalerweise nutzen Wissenschaftler wie beim Licht die einfache Absorption der Strahlung beziehungsweise die Fähigkeit einer Probe, Strahlung hindurchzulassen. Eine weitere Grundlage für den Erfolg der Experimente waren die Polarisatoren und Analysatoren sowie ortsauflösende Detektoren, die die HMI-Forscher in Eigenentwicklung gebaut haben.

Magnetismus ist eines der zentralen Forschungsfelder am HMI. Für das Verständnis der Hochtemperatursupraleitung ist es zum Beispiel eminent wichtig zu verstehen, wie sich magnetische Flusslinien verteilen und wie man diese Flusslinien im Material festhalten kann. Mit Kardjilovs Experimentaufbau wird es nun unter anderem möglich sein, magnetische Domänen in magnetischen Kristallen dreidimensional zu visualisieren.

Veröffentlichung:

Nikolay Kardjilov, Ingo Manke, Markus Strobl, André Hilger, Wolfgang Treimer, Michael Meissner, Thomas Krist & John Banhart: Three-dimensional imaging of magnetic fields with polarized neutrons, Nature Physics, Published online: 30 March 2008, doi:10.1038/nphys912

Das könnte Sie auch interessieren

  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.
  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.
  • Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Science Highlight
    22.11.2022
    Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.