Kooperation zwischen HZB und Universität Freiburg

Die Theoriegruppe um Joe Dzubiella. Bild. HZB

Die Theoriegruppe um Joe Dzubiella. Bild. HZB © HZB

Mit einer gemeinsamen Forschungsgruppe zur „Simulation von Energiematerialien“ kann Prof. Dr. Joachim Dzubiella, Albert-Ludwigs-Universität Freiburg, die Zusammenarbeit mit dem HZB fortsetzen. Der theoretische Physiker hatte bis vor wenigen Monaten am HZB die Gruppe „Theorie und Simulation“ geleitet und dabei eng mit Kolleginnen und Kollegen aus der Experimentalforschung kooperiert. Die Forschungsgruppe wird sich mit elektrochemischer Energiespeicherung und solaren Brennstoffen beschäftigen.

Von 2010 bis Anfang 2018 hatte Joachim Dzubiella am HZB geforscht und dort eine Theoriegruppe aufgebaut. Dabei schätzte er die kurzen Wege zu den experimentell arbeitenden Kolleginnen und Kollegen und arbeitete eng mit ihnen zusammen. In 2015 erhielt er einen Consolidator Grant des European Research Council, was ihm den weiteren Ausbau seiner Gruppe ermöglichte.

Im April 2018 folgte der Physiker dem Ruf auf eine W3-Professur für Angewandte Theoretische Physik an die Albert-Ludwigs-Universität Freiburg. Doch die Zusammenarbeit mit dem HZB geht weiter. Dies ermöglicht nun die gemeinsame Forschungsgruppe zur „Simulation von Energiematerialien“, die vom Helmholtz-Zentrum Berlin und der Uni Freiburg gefördert wird.

„Es gibt im Bereich der solaren Brennstoffe großes Interesse daran, die Vorgänge an den Katalysatorschichten, die die Spaltung von Wasser erleichtern, genauer zu verstehen“, erklärt Dzubiella. Auch bei der elektrochemischen Energiespeicherung gibt es zahlreiche Aspekte, die sich durch Modellierungen deutlich besser analysieren lassen. Die gemeinsame Forschungsgruppe besteht aktuell aus sieben Forscherinnen und Forschern. Der Fokus liegt auf dem Geschehen an Grenzflächen zwischen flüssigen und festen Phasen, das die Theoretiker mit Modellen im Computer simulieren, um den treibenden Kräften auf die Spur zu kommen.

Mit Skype-Terminen, Besuchen und Workshops im Grünen werden sich die Freiburger und Berliner Gruppenmitglieder austauschen. Vorerst ist die Finanzierung für fünf Jahre gesichert.

Mehr Informationen: http://helmholtz-berlin.de/forschung/oe/ee/simulation/

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.