Collaboration between HZB and the University of Freiburg
The theory group with Joe Dzubiella. © HZB
Through a Joint Research Group entitled “Simulation of Energy Materials“ Prof. Joachim Dzubiella of the Albert-Ludwigs-Universität, Freiburg will be able to continue his collaboration with the HZB. The theoretical physicist headed the “Theory and Simulation“ group at the HZB until recently and worked closely together with colleagues conducting experimental research. The new research group will concentrate on electrochemical energy storage and solar fuels.
From 2010 until spring 2018, Joachim Dzubiella was a scientist at HZB carrying on research and building up his theory group. He appreciated the short paths to experimentalists and worked closely with them. In 2015 he received a Consolidator Grant from the European Research Council that enabled him to further expand his group.
The physicist accepted a W3 professorship in Applied Theoretical Physics at the University of Freiburg In April 2018. But the collaboration with the HZB will continue. This has been made possible now through a Joint Research Group entitled "Simulation of Energy Materials" funded by the Helmholtz-Zentrum Berlin and the University of Freiburg.
“In the field of solar fuels, there is great interest in more clearly understanding the processes taking place at the catalyst layers that facilitate the splitting of water“, explains Dzubiella. There are also numerous aspects of electrochemical energy storage that can be analysed significantly better through modelling. The Joint Research Group currently consists of seven researchers. The focus is on what happens at the interfaces between liquid and solid phases, which are simulated by theorists with computer models in order to track down the driving forces.
The group members from Freiburg and Berlin will exchange ideas with Skype meetings, visits, and retreats in the countryside. Initial funding has been secured for five years.
More Information: http://helmholtz-berlin.de/forschung/oe/ee/simulation/
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14948;sprache=en
- Copy link
-
BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
-
Did marine life in the palaeocene use a compass?
Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.
-
What vibrating molecules might reveal about cell biology
Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.