Nanodiamanten als Photokatalysatoren

Mit Fremdatomen dotierter Schaum aus Kohlenstoff.

Mit Fremdatomen dotierter Schaum aus Kohlenstoff. © P. Knittel/Fraunhofer IAF

Diamant-Nanomaterialien gelten als heiße Kandidaten für günstige Photokatalysatoren. Sie lassen sich durch Licht aktivieren und können dann bestimmte Reaktionen zwischen Wasser und CO2 beschleunigen und klimaneutrale „solare Brennstoffe“ erzeugen. Das EU-Projekt DIACAT hat nun solche Diamant-Materialien mit Bor dotiert und an BESSY II gezeigt, wie dies die photokatalytischen Eigenschaften deutlich verbessern könnte.

Der Klimawandel ist in vollem Gang und setzt sich ungebremst fort, solange es nicht gelingt, die CO2-Emissionen deutlich zu reduzieren. Dafür brauchen wir alle Optionen. Eine Idee ist, das Treibhausgas CO2 wieder in den Energiekreislauf zurückzuführen: CO2 könnte mit Wasser zu Methanol verarbeitet werden, einem Brennstoff, der sich hervorragend transportieren und speichern lässt. Die Reaktion, die an einen Teilprozess der Photosynthese erinnert, erfordert jedoch Energie und günstige Katalysatoren. Falls es gelingt, diese Energie aus Sonnenlicht zu nutzen und lichtaktive Photokatalysatoren zu entwickeln, die nicht aus seltenen Metallen wie Platin bestehen, sondern aus preisgünstigen und reichlich vorhandenen Materialien, gäbe es eine Chance auf „grüne“ klimaneutral erzeugte Treibstoffe.

Nanomaterialien aus Kohlenstoff: Aktivierung nur mit UV

Ein Kandidat für solche Photokatalysatoren sind so genannte Diamant-Nanomaterialien – dabei handelt es  sich nicht um kostbare kristalline Diamanten, sondern um winzige Nanokristalle aus wenigen tausend Kohlenstoffatomen, die wasserlöslich sind und wie schwarzer Schlamm aussehen oder auch um nanostrukturierte „Kohlenstoff-Schäume“ mit sehr großen Oberflächen. Damit diese Materialien katalytisch aktiv werden, benötigen sie jedoch Anregung durch UV-Licht. Nur dieser Spektralbereich des Sonnenlichts ist energiereich genug, um Elektronen aus dem Material in einen „freien Zustand“ zu befördern, so dass die Reaktion zwischen Wasser und CO2 zu Methanol gelingt.

Hilft Dotieren mit Bor ?

Allerdings ist der UV-Anteil im Sonnenspektrum nicht sehr hoch. Ideal wären Photokatalysatoren, die auch das sichtbare Spektrum des Sonnenlichts nutzen könnten. Hier setzt nun die Arbeit von HZB-Forscher Dr. Tristan Petit und seinen Kooperationspartnern im Rahmen von DIACAT an: Denn Modellierungen von Prof. Dr. Karin Larsson, Universität Uppsala, hatten gezeigt, dass die sich durch das Dotieren mit Fremdatomen bestimmte Zwischenstufen in der Bandlücke dieser Materialien einbauen lassen sollten. Als besonders ereignet erschient dabei das dreiwertige Element Bor.

Ja, aber - zeigen die Messungen an BESSY II

Petit und sein Team  haben daher Proben aus polykristallinen Diamanten, Diamant-Schäumen und Nanodiamanten untersucht. Diese Proben waren zuvor von Gruppen um Prof. Dr. Anke Krüger, Würzburg, und Dr. Christoph Nebel, Freiburg, synthetisiert und im Anschluss mit dem Element Bor dotiert worden. An BESSY II konnten nun mit Hilfe von Röntgenabsorptions-Spektroskopie bestimmte Energiezustände der Elektronen vermessen werden. „Die Bor-Atome, die sich an den Oberfläche dieser Nanodiamanten befinden, führen tatsächlich zu den erwünschten Zwischenstufen in der Bandlücke“, erklärt Sneha Choudhuri, Erstautorin der Studie. Allerdings befinden sich diese Zwischenstufen sehr nahe an den Leitungsbändern, ermöglichen also bislang nicht, sichtbares Licht zu nutzen. Dies hängt aber auch, zeigen die Messungen, vom Aufbau der Nanomaterialien ab.

Ausblick: Morphologie und andere Fremdatome

„Wir können solche zusätzlichen Stufen in der Bandlücke solcher Diamantmaterialien durch gezieltes Verändern der Morphologie und Dotieren einführen und möglicherweise kontrollieren“, sagt Tristan Petit. Auch das Dotieren mit Phosphor oder Stickstoff könnte weitere Chancen bieten.

 

Publikation in Journal of Materials Chemistry A (2018):Combining nanostructuration with boron doping to alter sub band gap acceptor states in diamond materials; Sneha Choudhury, Benjamin Kiendl, Jian Ren, Fang Gao, Peter Knittel, Christoph Nebel, Amélie Venerosy, Hugues Girard, Jean-Charles Arnault, Anke Krueger, Karin Larsson & Tristan Petit

DOI: 10.1039/c8ta05594g

Mehr zum EU-Projekt DIACAT: https://www.diacat.eu/

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.