ERC-Synergy-Grant mit HZB-Beteiligung eingeworben

Der Informatiker Andreas Maier, die Materialforscherin Silke Christiansen und der Mediziner Georg Schett haben gemeinsam einen ERC Synergy Grant eingeworben.

Der Informatiker Andreas Maier, die Materialforscherin Silke Christiansen und der Mediziner Georg Schett haben gemeinsam einen ERC Synergy Grant eingeworben. © FAU

Neuartiges Röntgenmikroskop soll Mikrostrukturen in situ und in vivo abbilden

Ein interdisziplinäres Team von Wissenschaftlerinnen und Wissenschaftlern will ein neues bildgebendes Verfahren zur Untersuchung von Osteoporose und anderen Knochenerkrankungen für den Einsatz am lebenden Individuum entwickeln, um raschere Therapieerfolge zu ermöglichen. Prof. Dr. Silke Christiansen, Wissenschaftlerin am HZB und Physik-Professorin an der Freien Universität Berlin bringt ihre Expertise in der korrelativen Mikroskopie und Nanotechnologie ein. Das Projekt 4-D+ nanoSCOPE wurde nun vom Europäischen Forschungsrat (ERC) zur Förderung durch einen ERC-Synergy Grant ausgewählt und wird für 72 Monate mit bis zu 12,3 Mio. Euro gefördert werden.

Weltweit nimmt die Zahl älterer und hochbetagter Menschen zu, und damit auch die Anzahl von Patienten, die an Osteoporose leiden. Diese Krankheit beeinträchtigt die Lebensqualität erheblich und führt zu hohen gesellschaftlichen Kosten. Dennoch sind Entstehung und Ablauf von Osteoporose noch immer nicht ausreichend verstanden. Denn Methoden für eine tiefgehende Analyse der Knochenfeinstruktur im Zeitverlauf am lebenden Individuum stehen bisher nicht zur Verfügung, insbesondere solche, die auch große Matrixstudien mit statistischer Signifikanz erlauben. Dies will nun ein interdisziplinäres Forschungsprojekt ändern.

Die Professoren Georg Schett (Universitätsklinikum Erlangen), Andreas Maier (Friedrich-Alexander-Universität Erlangen Nürnberg) und Silke Christiansen (Helmholtz-Zentrum Berlin für Materialien und Energie, HZB sowie Freie Universität Berlin) wollen dafür erstmals Röntgenmikroskopie an Lebewesen ermöglichen. Sie planen die Entwicklung eines einzigartigen, schnell scannenden und niedrig dosierten Röntgenmikroskops, einem „4D+ nanoSCOPE“ für das sie in enger Zusammenarbeit mit der Firma Carl Zeiss Microscopy ein Gerät vom Typ XRM Versa 520 Hardware- und Software-seitig modifizieren werden. Hier werden insbesondere die Integration einer neuartigen Hochleistungsröntgenquelle und eines ultra-schnellen Auslesedetektors erfolgen wobei auch die Datenauswertung mit neusten Verfahren des maschinellen Lernens (Precision Learning) neu aufgestellt werden muss.

Das 4D-Nanoskop wird erstmalig erlauben die Mikro- und Nanostruktur von Knochen am lebenden Individuum in zeitlicher Entwicklung zu monitoren und damit den Prozess des Knochenumbaus zu verstehen. Damit wird es möglich, Auswirkungen von Alter, Hormonstatus, Entzündungsprozessen, Medikamenten oder anderen Therapieansätzen auf den Knochen zu beurteilen.

„Wir gratulieren Silke Christiansen und ihren Kollegen zu dieser sehr prestigeträchtigen und wirklich synergetischen Förderung. Das neue Mikroskop wird zunächst in der medizinischen Forschung eingesetzt, aber wir freuen uns darauf, seine einzigartigen Möglichkeiten auch in der Energieforschung zu nutzen", sagt Prof. Bernd Rech, wissenschaftlicher Direktor des HZB. Die Methode ermöglicht auch in situ-Studien von dynamischen Prozessen in natürlichen und synthetischen Materialien, beispielsweise die Beobachtung und das Verfolgen von Korrosionsprozessen und Mikrofrakturierung.

Das HZB besitzt große Expertise auf dem Gebiet der Röntgenuntersuchungen und der Elektronenmikroskopie und hat einen modernen Gerätepark (CoreLabs) aufgebaut, der vor allem zur Forschung an Dünnschichtsolarzellen, solaren Brennstoffen und anderen Energiematerialien genutzt wird. Die HZB CoreLabs sowie modernste Zeiss Labs@Location-Röntgenmikroskope ergänzen das Synchrotron BESSY II.

 

Projektname: 4-D+ nanoScope – Advancing osteoporosis medicine by observing bone microstructure and remodelling using a four-dimensional nanoscope.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.