Milestone for bERLinPro: photocathodes with high quantum efficiency

Photocathode in superconducting photoinjector system.

Photocathode in superconducting photoinjector system. © J. Kühn/HZB

The superconducting photoinjector system (1): The photocathode (3) is excited by a green laser (2) and emits electrons (4) which are accelerated in the superconducting RF cavity.

The superconducting photoinjector system (1): The photocathode (3) is excited by a green laser (2) and emits electrons (4) which are accelerated in the superconducting RF cavity. © Britta Mießen

Photocathode after its production in the preparatory system.

Photocathode after its production in the preparatory system. © J. Kühn/HZB

A team at the HZB has improved the manufacturing process of photocathodes and can now provide photocathodes with high quantum efficiency for bERLinPro.

Teams from the accelerator physics and the SRF groups at HZB are developing a superconducting linear accelerator featuring energy recovery (Energy Recovery Linac) as part of the bERLinPro project. It accelerates an intense electron beam that can then be used for various applications – such as generating brilliant synchrotron radiation. After use, the electron bunches are directed back to the superconducting linear accelerator, where they release almost all their remaining energy. This energy is then available for accelerating new electron bunches.

Electron source: photocathode

A crucial component of the design is the electron source. Electrons are generated by illuminating a photocathode with a green laser beam. The quantum efficiency, as it is referred to, indicates how many electrons the photocathode material emits when illuminated at a certain laser wavelength and power. Bialkali antimonides exhibit particularly high quantum efficiency in the region of visible light. However, thin films of these materials are highly reactive and therefore very sensitive, so they only work at ultra-high vacuum.

Manufacturing process modified

A HZB team headed by Martin Schmeißer, Dr. Julius Kühn, Dr. Sonal Mistry, and Prof. Thorsten Kamps has now greatly improved the performance of the photocathode so it is ready for use with bERLinPro. They modified the manufacturing process for the photocathodes of cesium- potassium-antimonide on a molybdenum substrate. The new process delivers the desired high quantum efficiency and stability. Studies showed that the photocathodes do not degrade, even at low temperatures. This is a critical prerequisite for operation within a superconducting electron source, where the cathode must be operated at temperatures far below zero.

High quantum efficiency

The physicists were able to demonstrate this performance with detailed studies: Even after its transport via the photocathode transfer system and introduction into the photo injector of the SRF, the quantum efficiency of the photocathode was still about five times higher than necessary to achieve the maximum electron-beam current needed for bERLinPro.

Milestone for bERLinPro

 “An important milestone for bERLinPro has been reached. We now have the photocathodes available to generate the first electron beam from our SRF photoinjector at bERLinPro in 2019“, says Prof. Andreas Jankowiak, head of the HZB Institute for Accelerator Physics.

 

Published in Physical Review Accelerators and Beams (2018): "Addressing challenges related to the operation of Cs-K-Sb photocathodes in SRF photoinjectors"; M. A. H. Schmeisser, S. Mistry, H. Kirschner, S. Schubert, A. Jankowiak, T. Kamps, J. Kühn.

doi:10.1103/PhysRevAccelBeams.21.113401

 

 

arö

  • Copy link

You might also be interested in

  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!