Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz

Photokathode im supraleitenden Photoinjektorsystem.

Photokathode im supraleitenden Photoinjektorsystem. © J. Kühn/HZB

Das supraleitende Photoinjektorsystem (1): Die Photokathode (3) wird durch einen grünen Laser (2) angeregt und emittiert Elektronen (4), die in der supraleitenden RF-Kavität beschleunigt werden.

Das supraleitende Photoinjektorsystem (1): Die Photokathode (3) wird durch einen grünen Laser (2) angeregt und emittiert Elektronen (4), die in der supraleitenden RF-Kavität beschleunigt werden. © Britta Mießen

Photokathode nach Herstellung im Präparationssystem.

Photokathode nach Herstellung im Präparationssystem. © J. Kühn/HZB

Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert, so dass diese nun hohe  Quanteneffizienz besitzen. Damit stehen geeignete Photokathoden zur Verfügung, um 2019 den ersten Elektronenstrahl in bERLinPro zu erzeugen. 

Am HZB entwickeln Teams aus der Beschleunigerphysik und SRF im Rahmen des Projekts bERLinPro einen supraleitenden Linearbeschleuniger mit Energierückgewinnung (Energy Recovery Linac). Darin wird ein intensiver Elektronenstrahl beschleunigt, der dann für unterschiedliche Anwendungen genutzt werden kann – wie die Erzeugung brillanter Synchrotronstrahlung. Nach dieser Nutzung werden die Elektronenpakete zum Linearbeschleuniger zurückgeleitet, wo sie nahezu ihre gesamte restliche Energie abgeben. Diese Energie steht damit wieder für die Beschleunigung neuer Elektronenpakete zur Verfügung.

Photokathode als Elektronenquelle

Ein wichtiger Bestandteil des Konzepts ist die Elektronenquelle. Die Elektronen werden durch Beleuchtung einer Photokathode mit einem grünen Laserstrahl erzeugt. Dabei gibt die sogenannte Quanteneffizienz an, wie viele Elektronen das Photokathoden-Material bei einer bestimmten Laserwellenlänge und Laserleistung emittiert. Besonders hohe Quanteneffizienz im sichtbaren Bereich haben bialkalische Antimonide. Allerdings sind diese Dünnfilme hochreaktiv und damit sehr empfindlich, sodass sie nur im Ultrahochvakuum funktionieren.

Herstellung optimiert

Nun hat ein HZB-Team um Martin Schmeißer, Dr. Julius Kühn, Dr. Sonal Mistry und Prof. Thorsten Kamps die Photokathode soweit entwickelt, dass sie für bERLinPro einsatzbereit ist. Sie optimierten dafür den Herstellungsprozess für Photokathoden aus Cäsium, Kalium und Antimon auf einem Molybdän-Substrat. Der neue Prozess liefert die gewünschte hohe Quanteneffizienz und Stabilität. Auch bei niedrigen Temperaturen degradieren die Photokathoden nicht, zeigten die Untersuchungen. Das ist eine zentrale Voraussetzung für den Betrieb in einer supraleitenden Elektronenquelle, wo die Kathode bei Temperaturen weit unter dem Nullpunkt betrieben werden muss.

Quanteneffizienz übertrifft Anforderungen

Mit ausführlichen Untersuchungen konnten die Physiker belegen: Auch nach dem Transport und Einschleusen in das Photokathoden-Transfer-System des SRF-Photoinjektors war die Quanteneffizienz der Photokathode noch ca. fünfmal höher als nötig, um den maximalen Strahlstrom [RA1] bei bERLinPro zu erreichen.

Meilenstein für bERLinPro

 „Ein wichtiger Meilenstein für bERLinPro ist damit erreicht. Wir haben nun die Photokathoden verfügbar, um in 2019 den ersten Elektronenstrahl aus unserem SRF Photoinjektor in bERLinPro zu erzeugen“, sagt Professor Dr. Andreas Jankowiak, der das HZB-Institut für Beschleunigerphysik leitet.

 

Publiziert in Physical Review Accelerators and Beams (2018): "Addressing challenges related to the operation of Cs-K-Sb photocathodes in SRF photoinjectors" ; M. A. H. Schmeisser, S. Mistry, H. Kirschner, S. Schubert, A. Jankowiak, T. Kamps, J. Kühn

doi:10.1103/PhysRevAccelBeams.21.113401

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.