Marcus Bär accepts W2 professorship for X-ray spectroscopy in Erlangen-Nuremberg

Marcus Bär, here in EMIL lab at HZB, has accepted a professorship at FAU in South-Germany.

Marcus Bär, here in EMIL lab at HZB, has accepted a professorship at FAU in South-Germany. © Phil Dera

Prof. Marcus Bär has accepted a professorship for X-ray spectroscopy at the Friedrich-Alexander Universität Erlangen-Nürnberg (FAU). Bär heads the Department of Interface Design at Helmholtz-Zentrum Berlin (HZB). The new W2 professorship was established in cooperation with HZB and Forschungszentrum Jülich in order to strengthen the Helmholtz-Institute Erlangen-Nürnberg für Renewable Energy (HI ERN). In the future, Bär will also be working on HI ERN research topics at HZB, thereby contributing to the intensification of cooperation.

Marcus Bär studied physics at the University of Potsdam and Environmental Engineering/Renewable Energies at the University of Applied Sciences (FHTW) in Berlin. In 2003 he earned his doctorate in electrical engineering in the field of solar energy research at the Hahn-Meitner-Institut Berlin and at the TU Berlin. Thereafter, Prof. Bär was Emmy-Noether Fellow at the Department of Chemistry of the University of Nevada in Las Vegas/USA. He was promoted to an Adjunct Assistant Research Professor at this department in 2006 and to an Assistant Research Professor in 2007. In 2009 he returned to Berlin and became head of the Helmholtz Young Investigator Group "Improving thin-film solar cells by deliberate interface tailoring" at the HZB. Two years later he was appointed professor for photovoltaics at the BTU Cottbus-Senftenberg.

Prof. Bär's research interests lie in the field of X-ray spectroscopic investigation of the chemical and electronic structure of energy-conversion materials and structures with a focus on thin-film solar cells. In the future, Prof. Bär wants to establish the infrastructure for in-situ and operando investigations of (photo/electro)catalytic materials, which are also interesting to the HI ERN researchers.

red.

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.