Batterien mit Siliziumanoden: Neutronenexperimente zeigen, wie Oberflächenstrukturen die Kapazität reduzieren

Wie Lithium in die Silizium-Anode einwandert, hat das Team mit Neutronenstrahlen (rote Pfeile) gemessen.

Wie Lithium in die Silizium-Anode einwandert, hat das Team mit Neutronenstrahlen (rote Pfeile) gemessen. © HZB

Theoretisch könnten Anoden aus Silizium zehnmal mehr Lithium-Ionen speichern als die Graphit-Anoden, die seit vielen Jahren in kommerziellen Lithium-Batterien eingesetzt werden. Doch bisher sinkt die Kapazität von Silizium-Anoden mit jedem weiteren Lade-Entladezyklen stark ab. Nun hat ein HZB-Team mit Neutronenexperimenten am BER II in Berlin und am Institut Laue-Langevin in Grenoble aufgeklärt, was an der Oberfläche der Siliziumanode während des Aufladens passiert und welche Prozesse die Kapazität reduzieren.

„Mit den Neutronenexperimenten und weiteren Messungen konnten wir beobachten, wie sich beim Aufladen an der Siliziumoberfläche eine blockierende Schicht bildet, die das Eindringen von Lithium-Ionen behindert“, erläutert der HZB-Physiker Dr. Sebastian Risse. Diese Schicht besteht aus organischen Molekülen aus der Elektrolyt-Flüssigkeit und anorganischen Bestandteilen. Beim Aufladen löst sich diese 30-60 Nanometer dünne Schicht teilweise wieder auf, sodass die Lithium-Ionen in die Silizium-Anode eindringen können. Für das Auflösen der Schicht wird jedoch Energie benötigt, die dann nicht mehr zur Speicherung zur Verfügung steht. Die Physiker verwendeten die gleiche Elektrolyt-Flüssigkeit, die auch in kommerziellen Lithium-Batterien genutzt wird.

Mehrere Ladezyklen beobachtet

Nach Voruntersuchungen der Neutronenquelle BER II des HZB brachten die Experimente am Institut Laue-Langevin (ILL) in Grenoble den genauen Einblick in die Prozesse. „Am Reaktor des ILL stehen kalte Neutronen mit einem sehr hohen Fluss zur Verfügung, mit denen wir die Silizium-Anode während mehrerer Ladezyklen zerstörungsfrei beobachten konnten“, erklärt Risse. Mit einer am HZB entwickelten Messzelle konnten die Physiker die Silizium-Anoden während der Lade-Entladezyklen (in operando) mit Neutronen untersuchen und dabei auch eine Reihe von anderen Messwerten wie den elektrischen Widerstand mit Impedanz-Spektroskopie erfassen.

Effizienz von 94 Prozent erreichbar

Sobald diese Blockade-Schicht aufgelöst ist, steigt die Effizienz der Ladungs-Entladungszyklen auf 94 Prozent, (94 % der abgespeicherten Ladung kann wieder ausgeliefert werden). Dieser Wert ist höher als der von Bleibatterien (90 %), aber etwas niedriger als der von technisch sehr ausgereiften Lithium-Ionen-Batterien, die bis zu 99,9 % erreichen.

Ausblick: Verhindern der Blockadeschicht

„Wir wollen nun untersuchen, ob sich durch Aufbringen einer sehr dünnen Schutzschicht aus Metalloxid die Bildung der Blockadeschicht verhindern lässt, sodass die Kapazität von Silizium-Anoden im Lauf von vielen Lade-Entladezyklen weniger stark sinkt“, sagt Risse.

Die Studie wurde in der Zeitschrift „Energy Storage Materials“ veröffentlicht: "Surface structure inhibited lithiation of crystalline silicon probed with operando neutron reflectivity". Arne Ronneburg, Marcus Trapp, Robert Cubitt, Luca Silvi,  Sébastien Cap, Matthias  Ballauff, Sebastian Risse.

DOI: 10.1016/j.ensm.2018.11.032

arö

Das könnte Sie auch interessieren

  • Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Science Highlight
    27.01.2023
    Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im normalen Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur Vorläuferlösung des Perowskits hinzu, verbessert sich die Stabilität enorm. Dies zeigt nun ein internationales Team unter der Leitung von Antonio Abate, HZB, im Fachjournal Science. Die so hergestellten Solarzellen erreichen Wirkungsgrade von deutlich über 24 Prozent, die selbst bei dramatischen Temperaturschwankungen zwischen -60 und +80 Grad Celsius über hundert Zyklen kaum sinken. Das entspricht etwa einem Jahr im Außeneinsatz.

  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.
  • Lesetipp: Bunsen-Magazin mit Schwerpunkt Wasserforschung
    Nachricht
    13.01.2023
    Lesetipp: Bunsen-Magazin mit Schwerpunkt Wasserforschung
    Wasser besitzt nicht nur einige bekannte Anomalien, sondern steckt noch immer voller Überraschungen. Die erste Ausgabe 2023 des Bunsen-Magazins widmet sich der molekularen Wasserforschung, vom Ozean bis zu Prozessen bei der Elektrolyse. Das Heft präsentiert Beiträge von Forschenden, die im Rahmen einer europäischen Forschungsinitiative im „Centre for Molecular Water Science“ (CMWS) kooperieren. Ein Team am HZB stellt darin Ergebnisse aus der Synchrotronspektroskopie von Wasser vor. Denn an modernen Röntgenquellen lassen sich molekulare und elektronische Prozesse in Wasser im Detail untersuchen.