Hauchdünn und extrem effizient: Dünnschicht-Tandemzelle aus Perowskit- und CIGSe-Halbleitern

Eine extrem dünne Zwischenschicht verbessert die Eigenschaften der CIGSe-Perowskit-Tandemzelle.

Eine extrem dünne Zwischenschicht verbessert die Eigenschaften der CIGSe-Perowskit-Tandemzelle. © HZB

Ein HZB-Team hat eine Tandem-Solarzelle mit reinen Dünnschicht-Solarzellen aus Perowskit und CIGSe hergestellt und charakterisiert. Dabei setzten sie auf ein einfaches, robustes Produktionsverfahren, das sich auch für die Aufskalierung auf große Flächen eignet. Die Tandem-Solarzelle besitzt einen sehr hohen Wirkungsgrad von 21.6 %. Durch weitere Optimierung könnte sie Wirkungsgrade über 30 % erreichen.

Tandem-Solarzellen bestehen aus zwei Halbleitern mit unterschiedlichen Bandlücken. Dadurch können sie einen größeren Anteil des Sonnenspektrums zur Stromerzeugung nutzen. Besonders erfolgreich ist dieses Konzept, wenn man konventionelle Absorberschichten wie Silizium oder Kupfer-Indium-Gallium-Selenid (CIGSe) mit dem neuen Metall-Halogenid-Halbleiter Perowskit kombiniert. Denn Perowskite wandeln die blauen, energiereichen Anteile des Lichts in effizient in elektrische Energie um, während Silizium oder CIGSe eher rote und nahinfrarote Anteile wirksam umwandeln.

CIGSe- und Perowskit-Dünnschicht kombiniert

HZB-Forscher haben nun eine Dünnschicht-Solarzelle aus CIGSe mit einer dünnen Schicht Perowskit kombiniert. Die CIGSe-Dünnschicht wurde auf einem Substrat aufgewachsen. Dabei entsteht eine CIGSe-Oberfläche, die typischerweise etwas unregelmäßig bzw. rau ist. Das erschwerte bisher die Aufbringung der Perowskit-Topzelle mit nasschemischen Methoden.

Ultradünne Zwischenschicht verbessert die Tandemzelle

Erstmalig hat das Team vom HZB nun in Zusammenarbeit mit der TU Eindhoven die Eigenschaften der Tandem-Solarzelle verbessert. Dafür haben sie eine ultradünne, aber konform wachsende Zwischenschicht auf die CIGSe-Schicht aufgetragen und erst anschließend im HySPRINT-Labor des HZB die Perowskitschicht aufgeschleudert. Die so produzierte Tandem-Solarzelle wandelt 21,6 % des Sonnenspektrums in elektrische Energie um. Dabei bleibt die erzeugte Leistung stabil.

Herstellung kostet wenig Energie und Material

Zwar erreichen Tandemzellen aus Silizium und Perowskit noch höhere Wirkungsgrade, aber theoretisch könnten auch CIGSe-Perowskit-Tandemzellen diese Wirkungsgrade erreichen.  Dazu kommt, dass die neue CIGSe-Perowskit-Tandemzelle nur aus Dünnschichten besteht, so dass der Material- und Energieverbrauch bei ihrer Herstellung extrem gering ist.

Für die industrielle Produktion geeignet

„Sehr wichtig ist auch, dass diese Tandemzelle auf einer rauen, unbehandelten CIGSe-Bottomzelle hergestellt wurde, was die Produktion vereinfacht und einen enormen Vorteil in Richtung Industrialisierung darstellt“, betont Prof. Dr. Rutger Schlatmann, Direktor des HZB-Instituts PVcomB.

Die Tandem-Solarzelle wurde auf einer Fläche von 0,8 Quadratzentimetern realisiert, was deutlich größer ist als die quadratmillimetergroßen Flächen, die in der Laborforschung üblich sind.  „Rekordwerte werden erst ab Flächen von einem Quadratzentimeter anerkannt, dazu fehlt hier aber nicht viel. Daher werden wir nun diese Tandem-Solarzelle und ihre enorme Leistungsfähigkeit von einer unabhängigen Einrichtung zertifizieren lassen“, sagt Prof. Dr. Steve Albrecht, der am HZB eine BMBF-geförderte Nachwuchsgruppe leitet.

Effizienz von mehr als 30 % möglich

Mit dem Elektronenmikroskop und weiteren Messungen analysierten die Wissenschaftler den Schichtaufbau der Tandemzelle. Dabei konnten Erstautor Dr. Marko Jost, Postdoc in der Nachwuchsgruppe von Albrecht, und seine Kollegen auch die Beiträge der einzelnen Subzellen zur Leistung der Tandemzelle ermitteln. Die Arbeit zeigt damit Wege auf, um monolithische Perowskit-CIGSe-Tandemzellen weiter zu optimieren und Effizienzen über 30 % zu erreichen.

 

Zur Studie:

Publiziert in ACS Energy Lett. (2019), 21.6%-efficient Monolithic Perovskite/Cu(In,Ga)Se2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces; Marko Jost, Tobias Bertram, Dibyashree Koushik, Jose Marquez, Marcel Verheijen, Marc Daniel Heinemann, Eike Köhnen, Amran Al-Ashouri, Steffen Braunger, Felix Lang, Bernd Rech, Thomas Unold, Mariadriana Creatore, Iver Lauermann, Christian A. Kaufmann, Rutger Schlatmann, and Steve Albrecht

DOI: 10.1021/acsenergylett.9b00135

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Nachricht
    15.10.2025
    Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.