HZB to participate in two Clusters of Excellence

Scientists at the Helmholtz-Zentrum Berlin (HZB) are researching novel systems of materials that can convert or store energy. The HZB will now also be contributing this expertise to the "MATH+" and "UniSysCat" Excellence Clusters being coordinated by Berlin universities. Over the next three years, the Helmholtz Association will fund HZB's participation under the Helmholtz Excellence Network with a total of 1.8 million euros.

Prof. Christiane Becker, who heads the Nanooptics Group at HZB in the Renewable Energies division, is involved in the "MATH+" Excellence Cluster. Becker investigates and develops optoelectronic materials with nanoscale features for solar cells and sensors and cooperates closely with mathematicians in MATH+. Their common goal is the development of highly efficient next-generation solar energy technologies, such as improved light management in tandem perovskite-silicon solar cells, for example. They will also work together on hybrid components for the production of solar fuels and develop simulation and optimisation methods.

MATH+ partner

MATH+ is the short name for "Forschungszentrum der Berliner Mathematik / Berlin Mathematics Research Center". The Freie Universität Berlin, Humboldt-Universität zu Berlin and Technische Universität Berlin as well as the Weierstrass Institute for Applied Analysis and Stochastics and the Zuse Institute Berlin are all participating in this project. The Helmholtz Association will fund HZB's participation with 800,000 euros from the Helmholtz Initiative and Networking Fund over the next three years.

UniSysCat: Focus on catalysis

Researchers in the "UniSysCat" (Unifying Systems in Catalysis) Excellence Cluster are developing complex catalytic systems. They focus on catalytic processes that are activated by sunlight. “These processes make it possible to use sunlight for generation of chemical fuels as well as for high energy-density compounds in a sustainable way. A particular challenge here is to link the rapid absorption processes in semiconductor materials with the often much slower electrochemical reactions of the bound catalyst“, explains Prof. Roel van de Krol, head of the HZB Institute for Solar Fuels. The HZB is contributing its particular expertise in material synthesis of thin-film absorbers, photoelectrochemistry, and time-resolved optical spectroscopy.

UniSysCat partner

UniSysCat is being coordinated by the Technische Universität Berlin. In addition, teams from Freie Universität Berlin, Humboldt-Universität zu Berlin, the University of Potsdam, Charité Universitätsmedizin Berlin, Fritz Haber Institute, Max Planck Institute of Colloids and Interfaces (MPIKG), and the Leibniz Institute for Molecular Pharmacology (FMP) are also participating. The Helmholtz Association will fund the HZB‘s participation with 1 million euros over the next three years from the Helmholtz Initiative and Networking Fund.

 

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.