HZB to participate in two Clusters of Excellence

Scientists at the Helmholtz-Zentrum Berlin (HZB) are researching novel systems of materials that can convert or store energy. The HZB will now also be contributing this expertise to the "MATH+" and "UniSysCat" Excellence Clusters being coordinated by Berlin universities. Over the next three years, the Helmholtz Association will fund HZB's participation under the Helmholtz Excellence Network with a total of 1.8 million euros.

Prof. Christiane Becker, who heads the Nanooptics Group at HZB in the Renewable Energies division, is involved in the "MATH+" Excellence Cluster. Becker investigates and develops optoelectronic materials with nanoscale features for solar cells and sensors and cooperates closely with mathematicians in MATH+. Their common goal is the development of highly efficient next-generation solar energy technologies, such as improved light management in tandem perovskite-silicon solar cells, for example. They will also work together on hybrid components for the production of solar fuels and develop simulation and optimisation methods.

MATH+ partner

MATH+ is the short name for "Forschungszentrum der Berliner Mathematik / Berlin Mathematics Research Center". The Freie Universität Berlin, Humboldt-Universität zu Berlin and Technische Universität Berlin as well as the Weierstrass Institute for Applied Analysis and Stochastics and the Zuse Institute Berlin are all participating in this project. The Helmholtz Association will fund HZB's participation with 800,000 euros from the Helmholtz Initiative and Networking Fund over the next three years.

UniSysCat: Focus on catalysis

Researchers in the "UniSysCat" (Unifying Systems in Catalysis) Excellence Cluster are developing complex catalytic systems. They focus on catalytic processes that are activated by sunlight. “These processes make it possible to use sunlight for generation of chemical fuels as well as for high energy-density compounds in a sustainable way. A particular challenge here is to link the rapid absorption processes in semiconductor materials with the often much slower electrochemical reactions of the bound catalyst“, explains Prof. Roel van de Krol, head of the HZB Institute for Solar Fuels. The HZB is contributing its particular expertise in material synthesis of thin-film absorbers, photoelectrochemistry, and time-resolved optical spectroscopy.

UniSysCat partner

UniSysCat is being coordinated by the Technische Universität Berlin. In addition, teams from Freie Universität Berlin, Humboldt-Universität zu Berlin, the University of Potsdam, Charité Universitätsmedizin Berlin, Fritz Haber Institute, Max Planck Institute of Colloids and Interfaces (MPIKG), and the Leibniz Institute for Molecular Pharmacology (FMP) are also participating. The Helmholtz Association will fund the HZB‘s participation with 1 million euros over the next three years from the Helmholtz Initiative and Networking Fund.

 

arö

  • Copy link

You might also be interested in

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!