HZB to participate in two Clusters of Excellence

Scientists at the Helmholtz-Zentrum Berlin (HZB) are researching novel systems of materials that can convert or store energy. The HZB will now also be contributing this expertise to the "MATH+" and "UniSysCat" Excellence Clusters being coordinated by Berlin universities. Over the next three years, the Helmholtz Association will fund HZB's participation under the Helmholtz Excellence Network with a total of 1.8 million euros.

Prof. Christiane Becker, who heads the Nanooptics Group at HZB in the Renewable Energies division, is involved in the "MATH+" Excellence Cluster. Becker investigates and develops optoelectronic materials with nanoscale features for solar cells and sensors and cooperates closely with mathematicians in MATH+. Their common goal is the development of highly efficient next-generation solar energy technologies, such as improved light management in tandem perovskite-silicon solar cells, for example. They will also work together on hybrid components for the production of solar fuels and develop simulation and optimisation methods.

MATH+ partner

MATH+ is the short name for "Forschungszentrum der Berliner Mathematik / Berlin Mathematics Research Center". The Freie Universität Berlin, Humboldt-Universität zu Berlin and Technische Universität Berlin as well as the Weierstrass Institute for Applied Analysis and Stochastics and the Zuse Institute Berlin are all participating in this project. The Helmholtz Association will fund HZB's participation with 800,000 euros from the Helmholtz Initiative and Networking Fund over the next three years.

UniSysCat: Focus on catalysis

Researchers in the "UniSysCat" (Unifying Systems in Catalysis) Excellence Cluster are developing complex catalytic systems. They focus on catalytic processes that are activated by sunlight. “These processes make it possible to use sunlight for generation of chemical fuels as well as for high energy-density compounds in a sustainable way. A particular challenge here is to link the rapid absorption processes in semiconductor materials with the often much slower electrochemical reactions of the bound catalyst“, explains Prof. Roel van de Krol, head of the HZB Institute for Solar Fuels. The HZB is contributing its particular expertise in material synthesis of thin-film absorbers, photoelectrochemistry, and time-resolved optical spectroscopy.

UniSysCat partner

UniSysCat is being coordinated by the Technische Universität Berlin. In addition, teams from Freie Universität Berlin, Humboldt-Universität zu Berlin, the University of Potsdam, Charité Universitätsmedizin Berlin, Fritz Haber Institute, Max Planck Institute of Colloids and Interfaces (MPIKG), and the Leibniz Institute for Molecular Pharmacology (FMP) are also participating. The Helmholtz Association will fund the HZB‘s participation with 1 million euros over the next three years from the Helmholtz Initiative and Networking Fund.

 

arö

  • Copy link

You might also be interested in

  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.