HZB an Sonderausgabe zu Ultraschneller Dynamik mit Röntgenmethoden beteiligt

Phillippe Wernet schlägt am Ende seines Beitrags einen großen Bogen von der Vergangenheit (Opticae Thesaurus, 1572) der Forschung mit Licht bis in die Zukunft.

Phillippe Wernet schlägt am Ende seines Beitrags einen großen Bogen von der Vergangenheit (Opticae Thesaurus, 1572) der Forschung mit Licht bis in die Zukunft. © Wikimedia cc

In dieser Sonderausgabe diskutieren führende Experten aktuelle Entwicklungen von Lichtquellen.

In dieser Sonderausgabe diskutieren führende Experten aktuelle Entwicklungen von Lichtquellen. © Royal Society

In der jetzt erschienenen Sonderausgabe der „Philosophical Transactions of the Royal Society of London“  berichten international ausgewiesene Experten über neue Entwicklungen bei Röntgenquellen und ultraschnellen zeitaufgelösten Experimenten. Auch HZB-Physiker wurden zu Beiträgen aufgefordert und haben geliefert.

Fast 350 Jahre nach Isaac Newtons bahnbrechendem Papier „Theory of Light and Colors (1671)“ widmet sich die älteste Wissenschaftszeitschrift der Welt, die "Philosophical Transactions der Royal Society of London", nun wieder dem Licht. Das Sonderheft richtet sich an Forschende, die biologische, chemische oder physikalische Prozesse untersuchen und einen Überblick über neue Entwicklungen an Lichtquellen sowie den dort zur Verfügung stehenden Methoden erhalten wollen. Dynamische Prozesse in Materialien lassen sich an Röntgenlichtquellen mit Hilfe von ultraschnellen Messmethoden hochaufgelöst analysieren.

Femtoslicing und BESSY VSR

Das Sonderheft gibt eine umfassende Übersicht über aktuelle Fortschritte bei der Erzeugung ultrakurzer Röntgenpulse durch Lichtquellen wie Freie Elektronenlaser (FELs), High Harmonic Generation (HHG) Laserquellen und Synchrotronstrahlungsquellen. Ein Beitrag unter Mitwirkung von Dr. Karsten Holldack, HZB, stellt dabei  speicherringbasierte Methoden wie Femtoslicing und BESSY VSR vor und ordnet sie ein. Diese Methoden kombinieren hochbrilliantes Synchrotronlicht mit einer speziellen Zeitstruktur und erlauben damit einzigartige experimentelle Fragestellungen, die an anderen Quellen nicht durchführbar sind. Damit ergänzen und erweitern sie das Portfolio an beschleunigerbasierten Quellen.

Photochemie mit ultraschneller Spektroskopie

Ein wichtiger Beitrag ist der Photochemie gewidmet, einem Gebiet, in dem Prozesse wie die Photosynthese im Zentrum stehen, deren Dynamik noch weitgehend unerforscht ist. Mit ultraschneller Spektroskopie an FELs, HHG-Quellen oder am Synchrotron mit BESSY VSR stehen nun Methoden zur Verfügung, um beispielsweise Anregungen von Metallo-Proteinen und der darauf folgenden Reaktionskette im Detail zu vermessen; Solche Experimente liefern Daten, die zum Beispiel für das Verständnis von Photokatalyse für solare Brennstoffe unverzichtbar sind. Dieser Beitrag wurde von Prof. Dr. Philippe Wernet verfasst, der bis vor kurzem am HZB geforscht hat und nun an der Universität Uppsala eine Professur bekleidet.

 

Zu den Publikationen:

Measurement of ultrafast electronic and structural dynamics with X-rays; J. P. Marangos (ed.)

doi: 10.1098/rsta/377/2145

Recent Advances in Ultrafast X-ray Sources; Robert Schoenlein, Thomas Elsaesser, Karsten Holldack, Zhirong Huang, Henry Kapteyn, Margaret Murnane, Michael Woerner

doi: 10.1098/rsta.2018.0384

Chemical interactions and dynamics with femtosecond X-ray spectroscopy and the role of X-ray free-electron lasers; Philippe Wernet

doi: 10.1098/rsta.2017.0464

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.