Entwicklung eines miniaturisierten EPR-Spektrometers

© Benedikt Schlecker

Das Projekt "EPR on a Chip" startete am 3. Juni 2019 mit einem Auftakttreffen am HZB.

Das Projekt "EPR on a Chip" startete am 3. Juni 2019 mit einem Auftakttreffen am HZB. © HZB

Mehrere Forschungseinrichtungen entwickeln mit dem Industriepartner Bruker eine miniaturisierte EPR-Messvorrichtung, um Halbleitermaterialien, Solarzellen, Katalysatoren und Elektroden für Brennstoffzellen und Batterien zu untersuchen. Das „Lab on a Chip“ wird einen Technologiesprung in der Elektronenspinresonanz (EPR auf Englisch) ermöglichen. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt „EPR-on-a-Chip“ mit 6,7 Millionen Euro. Am 3. Juni 2019 fand das Auftakttreffen am Helmholtz-Zentrum Berlin statt.

Die Elektronenspinresonanz bzw. elektronenparamagnetische Resonanz (EPR) liefert über die Anregung von Elektronenspins im Material detaillierte Information über dessen innere Struktur, bis hinunter auf die atomare Ebene. EPR-Spektroskopie ist ein wichtiges Instrument in der Biophysik, Chemie und medizinischen Diagnostik, wird mittlerweile aber auch in der Forschung an Energiematerialien wie Katalysatoren, Batterieelektroden und Solarzellenkomponenten eingesetzt.

Allerdings sind EPR-Spektrometer üblicherweise große und teure Geräte, die nur in besonders gut ausgestatteten Forschungslaboren zu finden sind. Zudem ist es mit konventionellen EPR-Geräten sehr schwierig, Untersuchungen unter realen Prozessbedingungen (operando-Messung) durchzuführen.

Doch es geht tatsächlich auch anders: Eine erste Demoversion eines miniaturisierten EPR-Spektrometers wurde bereits 2017 vorgestellt. Im Rahmen des BMBF-Projekts „EPRoC“ soll nun unter der Leitung von Prof. Dr. Klaus Lips und in enger Zusammenarbeit mit der Universität Stuttgart, dem Max-Planck-Institut für Chemische Energiekonversion, dem Karlsruher Institut für Technologie und der Firma Bruker eine Chip-basierte elektronenparamagnetische Resonanzspektroskopie (EPRoC) entwickelt werden, die diese systembedingten Nachteile für operando-Untersuchungen nicht mehr hat.

EPR-Chip kann sogar im Inneren der Probe platziert werden

Das EPR-Spektrometer wird dabei auf Chip-Größe miniaturisiert, so dass es sogar ins Innere der Probe eingeführt werden kann. Ziel ist es, mit Hilfe der EPRoC direkt Wachstumsprozesse von Dünnschichten für die Photovoltaik zu analysieren sowie katalytische Vorgänge während der Herstellung von solarem Wasserstoff zu untersuchen und zu verbessern. Dadurch ließe sich aufklären, wie die Strukturbildung auf der Nanoskala mit der Funktionalität der Prozesse und Materialien zusammenhängt.

Diese Technologie könnte auch andere analytische Verfahren verbessern

Während der dreijährigen Laufzeit des Projekts wollen die Partner das Potenzial der Technologie erschließen, indem sie die Effizienz der Prozesse und Bauelemente weiter verbessern und die Kosten senken. Zusätzlich wollen sie die EPRoC-Technik nutzen, um die Empfindlichkeit der Kernspinspektrometer (NMR) deutlich zu verbessern. Dies könnte sich langfristig auch auf die in der Medizin eingesetzte Magnetresonanztomographie auswirken.

Die Erkenntnisse sollen dafür sorgen, dass die EPRoC-Technologie innerhalb der nächsten zehn Jahre weiter entwickelt werden kann. Die Miniaturisierung der EPR wird neue Anwendungsgebiete erschließen und kann zu rascheren Fortschritten in der Energiematerialforschung, Sensorik, Medizin, Umwelttechnik, sowie der Lebensmittel- und analytischen Chemie führen.

Partner:

• Helmholtz-Zentrum Berlin, Institut für Nanospektroskopie (HZB), Koordination Prof. Dr. Klaus Lips

• Universität Stuttgart

• Karlsruher Institut für Technologie, Institut für Mikrostrukturtechnologie (KIT)

• Max-Planck-Institut für Chemische Energiekonversion (MPICEC)

• Bruker Biospin GmbH 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.