Organische Elektronik: Neuer Halbleiter aus der Familie der Kohlenstoffnitride

Die Illustration deutet im Hintergrund das Laserexperiment an und die Struktur des TGCN.

Die Illustration deutet im Hintergrund das Laserexperiment an und die Struktur des TGCN. © C.Merschjann/HZB

Teams der Humboldt-Universität und am Helmholtz-Zentrum Berlin haben ein neues Material aus der Familie der Kohlenstoffnitride untersucht. Das Triazin-basierte graphitische Kohlenstoffnitrid (TGCN) ist ein Halbleiter, der sich gut für Anwendungen in der Optoelektronik eignen sollte. Die Struktur ist zweidimensional und erinnert an Graphen. Anders als beim Graphen ist die Leitfähigkeit jedoch senkrecht zu den Ebenen 65mal höher als in den Ebenen selbst.

Manche organische Materialien könnten ähnlich wie Siliziumhalbleiter in der Optoelektronik eingesetzt werden. Ob als Solarzellen, Leuchtdioden oder auch als Transistoren – wichtig ist dabei die so genannte Bandlücke, also der Energie-Unterschied zwischen Elektronen im Valenzband (gebundener Zustand) und dem Leitungsband (beweglicher Zustand). Durch Licht oder eine elektrische Spannung lassen sich Ladungsträger vom Valenzband ins Leitungsband heben – so funktionieren im Prinzip alle elektronischen Bauelemente. Ideal sind Bandlücken zwischen 1-2 Elektronenvolt.

TGCN ist ein guter Kandidat für die Optoelektronik

Ein Team um den Chemiker Dr. Michael J. Bojdys an der Humboldt-Universität Berlin hat kürzlich ein neues organisches Halbleitermaterial aus der Familie der Kohlenstoffnitride synthetisiert. Das Triazin-basierte graphitische Kohlenstoffnitrid oder TGCN besteht nur aus Kohlenstoff- und Stickstoff-Atomen und lässt sich als brauner Film auf einem Quartzsubstrat aufwachsen. Die C- und N-Atome bilden miteinander sechseckige Waben, ähnlich wie im Graphen, das aus reinem Kohlenstoff besteht. Wie bei Graphen ist auch beim TGCN die kristalline Struktur zweidimensional. Bei Graphen ist die Leitfähigkeit in der Ebene jedoch exzellent, senkrecht dazu sehr schlecht. Bei TGCN ist es genau umgekehrt: die Leitfähigkeit senkrecht zur Ebene ist rund 65mal größer ist als in der Ebene selbst. Mit einer Bandlücke von 1,7 Elektronenvolt ist TGCN ein guter Kandidat für Anwendungen in der Optoelektronik.

Laserexperiment zeigt Transportprozesse im Detail

Der HZB-Physiker Dr. Christoph Merschjann hat daraufhin im Laserlabor JULiq, einem Joint Lab zwischen HZB und Freie Universität Berlin, die Transporteigenschaften in Proben aus TGCN mit zeitaufgelösten Absorptionsmessungen im Femto- bis Nanosekundenbereich untersucht. Solche Laserexperimente ermöglichen es, die makroskopische Leitfähigkeit mit mikroskopischen Transportmodellen zu verknüpfen. Aus den Messdaten konnte er ableiten, wie die Ladungsträger durch das Material diffundieren. „Sie verlassen die sechseckigen Waben aus Triazin-Einheiten nicht horizontal, sondern bewegen sich schräg zur nächsten Triazin-Einheit in der Nachbarebene. Sie bewegen sich entlang röhrenartiger Kanäle durch die Kristallstruktur.“ Dieser Mechanismus könnte erklären, dass die Leitfähigkeit senkrecht zu den Ebenen deutlich höher ist, als in den Ebenen. Allerdings reicht er vermutlich nicht aus, um den tatsächlich gemessenen Faktor von 65 zu erklären. „Wir haben die Transporteigenschaften in diesem Material noch nicht vollständig verstanden und wollen diese weiter untersuchen“, kündigt Merschjann an. Dazu wird der verwendete Aufbau im JULiq-Nachfolgelabor, dem ULLAS-Lab am HZB in Wannsee, für neue Experimente einsatzfähig gemacht.

 „TGCN ist daher bislang der beste Kandidat, um gängige anorganische Halbleiter wie Silizium mit ihren teilweise kritischen “Dotanden” aus seltenen Elementen zu ersetzen“, sagt Michael Bojdys. „Unser Herstellungsverfahren, das wir in meiner Gruppe an der Humboldt-Universität entwickelt haben, führt zu flachen Schichten von halbleitendem TGCN auf isolierendem Quartzglas. Das ermöglicht Upscaling und einfache Device-Produktion.“

Zur Publikation:

Angewandte Chemie: "Directional Charge Transport in Layered Two‐Dimensional Triazine‐Based Graphitic Carbon Nitride" Yu Noda, Christoph Merschjann, Ján Tarábek, Patrick Amsalem, Norbert Koch, Michael J. Bojdys

DOI: 10.1002/anie.201902314

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.