Ultraschneller Magnetismus: Elektron-Phonon-Wechselwirkungen an BESSY II analysiert

Nach Anregung durch Synchrotronstrahlung (grün) emittiert Nickel Röntgenlicht (gelb). Die Anzahl der emittierten Photonen nimmt jedoch ab, wenn sich die Temperatur von Raumtemperatur (links) auf 900 °C erhöht (rechts).

Nach Anregung durch Synchrotronstrahlung (grün) emittiert Nickel Röntgenlicht (gelb). Die Anzahl der emittierten Photonen nimmt jedoch ab, wenn sich die Temperatur von Raumtemperatur (links) auf 900 °C erhöht (rechts). © HZB

Wie schnell kann ein Magnet seine Ausrichtung ändern und was sind die mikroskopischen Mechanismen? Diese Fragen sind für die Entwicklung von Datenspeichern und Computerchips von größter Bedeutung. Jetzt ist es einem HZB-Team am BESSY II erstmals gelungen, den wichtigsten mikroskopischen Prozess des ultraschnellen Magnetismus experimentell zu beobachten. Die zu diesem Zweck entwickelte Methodik kann auch zur Untersuchung von Wechselwirkungen zwischen Spins und Gitterschwingungen in Graphen, Supraleitern oder anderen (Quanten-)Materialien verwendet werden.

Wechselwirkungen zwischen Elektronen und Gitterschwingungen (Phononen) gelten als die treibende Kraft hinter ultraschnellen Magnetisierungs- oder Entmagnetisierungsprozessen (Spin-Flips). Bisher war es jedoch aufgrund des Fehlens geeigneter Methoden nicht möglich, solche ultraschnellen Prozesse im Detail zu beobachten.

Neue Methode an BESSY II

Nun hat ein Team um Prof. Alexander Föhlisch eine neuartige Methode entwickelt, um erstmals die Spin-Flip-Streurate, die durch Elektron-Phonon-Wechselwirkungen getrieben wird, in zwei Modellsystemen experimentell zu bestimmen: in ferromagnetischems Nickel und nichtmagnetischem Kupfer. 

Nach Anregung Analyse der Emission

Dazu wurde die Röntgen-Emissionsspektroskopie (XES) bei BESSY II eingesetzt. Röntgenstrahlung regt dabei zunächst Elektronen in den Proben (Ni oder Cu) an, so dass „Löcher“ entstehen, die durch Valenzelektronen gefüllt werden können. Wenn Valenzelektronen diese Plätze besetzen, geben sie Licht ab; diese Emission kann dann analysiert werden. Die Proben wurden bei verschiedenen Temperaturen gemessen, um die Auswirkungen der zunehmenden Gitterschwingungen (Phononen) zu beobachten.

Spin-Flip-Streurate hängt nur in Nickel von Phononen ab

Mit steigender Temperatur zeigte ferromagnetisches Nickel einen starken Rückgang der Emissionen. Diese Beobachtung passt gut zu der theoretischen Simulation von Prozessen in der elektronischen Bandstruktur von Nickel nach Anregungen: Durch die Erhöhung der Temperatur und damit der Phononenpopulation steigt die Streurate zwischen Elektronen und Phononen. Gestreute Elektronen stehen für den Zerfall nicht mehr zur Verfügung, was zu einer Abnahme der Lichtemission führt. Wie erwartet, hatten beim diamagnetischen Kupfer die Gitterschwingungen kaum Einfluss auf die gemessenen Emissionen.

"Wir glauben, dass unser Artikel nicht nur für Spezialisten auf den Gebieten Magnetismus, Festkörperphysik und Röntgenemissionsspektroskopie von großem Interesse ist, sondern auch für eine breite Leserschaft, die neugierig auf die neuesten Entwicklungen in diesem dynamischen Forschungsgebiet ist", sagt Dr. Régis Decker, Erstautor und Postdoc im Föhlisch-Team. Das Verfahren kann auch zur Analyse von ultraschnellen Spin-Flip-Prozessen in neuartigen Quantenmaterialien wie Graphen, Supraleitern oder topologischen Isolatoren eingesetzt werden.

Scientific Reports, 2019: “Measuring the atomic spin-flip scattering rate by x-ray emission spectroscopy”. Régis Decker, Artur Born, Robby Büchner, Kari Ruotsalainen, Christian Strahlman, Stefan Neppl, Robert Haverkamp, Annette Pietzsch, and Alexander Föhlisch

DOI: 10.1038/s41598-019-45242-8

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.