Traditionsreiche HZB-Neutronenschule wird an ANSTO in Australien weitergeführt

Die Neutronenschule am ANSTO in Kooperation mit HZB-Expertinnen konnte den Teilnehmenden viel Wissen vermitteln.

Die Neutronenschule am ANSTO in Kooperation mit HZB-Expertinnen konnte den Teilnehmenden viel Wissen vermitteln. © ANSTO

Diesen Sommer haben Forscherinnen und Forscher an der australischen Neutronenquelle ACNS bei Australia’s Nuclear Science and Technology Organisation ANSTO eine gemeinsame Neutronenschule organisiert. Die HZB-ANSTO Neutronenschule soll künftig alle zwei Jahre stattfinden. 

Die erste gemeinsame HZB-ANSTO Neutronenschule fand vom 23. - 28.  Juni 2019 am ANSTO statt. Aus dem HZB hatten Prof. Dr. Bella Lake und Prof. Dr. Susan Schorr mehrere Vorlesungen übernommen. Das Interesse an der Neutronenschule war sehr groß, aus 60 Bewerbungen wurden 24 Teilnehmende ausgesucht. Neben Vorlesungen gab es insbesondere auch praktische Trainings an drei Instrumenten der Neutronenquelle ACNS bei ANSTO.

„Wir haben uns bei der Konzeption von der umfassenden Ausbildung der Neutronenschule in Berlin, am HZB, inspirieren lassen“, sagte Dr. Helen Maynard-Casely, eine der Organisatorinnen bei ANSTO.  Künftig werde ein zweijähriger Rhythmus angedacht, möglicherweise auch mit unterschiedlichen Schwerpunkten, zum Beispiel für Ingenieure.

Kurz vor Beginn der Neutronenschule konnte das Instrument SPATZ an der ACNS den Betrieb aufnehmen. SPATZ stammt ursprünglich aus der Berliner Neutronenquelle BER II und trug am HZB den Namen BioRef. Das Instrument ermöglicht einzigartige Einblicke in Energiematerialien, weiche Materie und biomedizinische Fragestellungen. Es wurde nach Australien transferiert, um auch nach Abschaltung des BER II der Forschung zur Verfügung zu stehen.

In einem kurzen Video berichtet ANSTO über den Transfer und den Aufbau von SPATZ.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.