Mit Mathe Zeit sparen: Design-Werkzeug für korkenzieherförmige Nano-Antennen

Die Nano-Antennen werden im Elektronenmikroskop mit direktem Elektronenstrahlschreiben erzeugt.

Die Nano-Antennen werden im Elektronenmikroskop mit direktem Elektronenstrahlschreiben erzeugt. © HZB

Erstmals hat ein HZB-Team mathematisch exakt formuliert, wie korkenzieherförmige Nano-Antennen mit Licht wechselwirken. Mit dem mathematischen Werkzeug lässt sich die jeweils geeignete Geometrie berechnen, die eine Nano-Antenne für konkrete Anwendungen in der Sensorik oder in der Informationstechnologie besitzen muss.

Die Nanostrukturen aus dem HZB-Team um Katja Höflich sind wie Korkenzieher geformt, sie bestehen aus Silber und sind etwa 100 Nanometer dick. Mathematisch lässt sich jede Nano-Antenne als nahezu eindimensionale Linie betrachten, die zu einer Helix verschraubt ist und durch Parameter wie Durchmesser, Länge, Windungszahl und Drehsinn der Helix gekennzeichnet werden kann.

Anwendungen in der IT oder Sensorik

Die Nano-Korkenzieher reagieren hochempfindlich auf Licht: Je nach Frequenz und Polarisationsrichtung können sie es extrem verstärken. Weil helixförmige Antennen eine Händigkeit (Chiralität) aufweisen, können sie Lichtquanten entsprechend ihrer Händigkeit, also ihrem Spin, auswählen. Dadurch ergeben sich neuartige Anwendungen in der Informationstechnologie, die auf der Spinquantenzahl von Licht basieren. Eine weitere Anwendung kann in der Sensorik liegen: Helix-förmige Nano-Antennen könnten hochempfindlich auf bestimmte chirale Verbindungen (Moleküle, die eine Händigkeit besitzen) reagieren, bis hin zum Nachweis einzelner Moleküle.   

Bislang: Numerische Modellierung

Üblicherweise wird die Wechselwirkung solcher Nano-Antennen mit einem elektromagnetischen Feld mit numerischen Methoden mit hoher Genauigkeit bestimmt. Jede neue Geometrie erfordert jedoch eine neue aufwendige Berechnung.

Jetzt: Eine Formel als Design-Werkzeug

Das Team um Höflich hat das Problem jetzt erstmals mathematisch exakt gelöst. „Wir haben nun eine Formel, die uns sagt, wie eine Nano-Antenne mit bestimmten Parametern auf Licht reagiert“, sagt Höflich. Diese analytische Beschreibung lässt sich als Design-Werkzeug nutzen: Denn sie besagt auch, wie eine Nano-Helix beschaffen sein muss, um elektromagnetische Felder bestimmter Frequenzen oder Polarisationsrichtungen zu verstärken.

Die realen Nano-Antennen konnten die HZB-Forscher in einem Elektronenmikroskop aus dem CCMS-Corelab des HZB mit dem Verfahren des direkten Elektronenstrahlschreibens erzeugen. Der Elektronenstrahl schreibt dafür Punkt für Punkt zunächst eine Kohlenstoffstruktur, die die Form einer Helix besitzt. Im Anschluss wird diese Struktur mit Silber beschichtet. Die gemessenen optischen Eigenschaften dieser Silber-Nano-Antennen stimmten mit den Berechnungen gut überein.

Optica (2019, Vol. 6, Issue 9): “Resonant behavior of a single plasmonic helix“; Katja Höflich, Thorsten Feichtner, Enno Hansjürgen, Caspar Haverkamp, Heiko Kollmann, Christoph Lienau, Martin Siles.

 

DOI: 10.1364/OPTICA.6.001098

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.