„Tanzmuster“ von Skyrmionen vermessen

Die Illustration zeigt Sykrmionen in einer ihrer Eigenschwingungen. Hier drehen sie im Uhrzeigersinn.

Die Illustration zeigt Sykrmionen in einer ihrer Eigenschwingungen. Hier drehen sie im Uhrzeigersinn. © Yotta Kippe/HZB

In bestimmten magnetischen Materialien wie Cu2OSeO3 entstehen magnetische Wirbel, so genannte Skyrmionen. Diese Skyrmionen lassen sich durch niedrige elektrische Ströme kontrollieren, was eine energiesparende Datenverarbeitung ermöglichen könnte. Nun ist es einem Team gelungen, an der VEKMAG-Station an BESSY II eine neue Technik zu entwickeln, um diese Wirbel präzise zu vermessen und dabei die drei unterschiedlichen Eigenschwingungen zu beobachten.

Cu2OSeO3 ist ein Material mit besonderen magnetischen Eigenschaften. So bilden sich in einem bestimmten Temperaturbereich bei einem kleinen äußeren Magnetfeld so genannte Skyrmionen: magnetische Spinwirbel. Aktuell sind dafür moderat tiefe Temperaturen um die 60 Kelvin (-213 Grad Celsius) erforderlich, es scheint aber möglich zu sein, diesen Temperaturbereich auch in die Raumtemperatur zu verschieben. Das Spannende an Skyrmionen ist, dass sie sich sehr leicht bewegen und kontrollieren lassen und damit neue Möglichkeiten für eine energiesparende Datenverarbeitung bieten.

Drei Eigenschwingungen erwartet

Theoretische Arbeiten hatten vorausgesagt, dass es möglich sein sollte, mit einem elektrischen Hochfrequenzfeld Skyrmionen in der Probe gemeinsam und synchron anzuregen: so könnten sich die Skyrmionen entweder alle gemeinsam im oder gegen den Uhrzeigersinn drehen oder aber „atmen“, indem sie sich ausdehnen und wieder zusammenziehen. Nun ist es einem Team gelungen, in einer einkristallinen Probe von Cu2OSeO3 die Dynamik dieser Skyrmionen im Detail zu vermessen.

Nachweis an der VEKMAG-Station an BESSY II

An BESSY II gelang es ihnen, eine spinauflösende Methode mit einem äußeren Mikrowellenfeld zu kombinieren: „So konnten wir die Spins und ihre Ausrichtung präzise kartieren, und zwar für jede Sorte von Spins, die in der Probe vorhanden ist“, erläutert der HZB-Physiker Dr. Florin Radu, der gemeinsam mit Kooperationspartnern aus den Universitäten Regensburg, der Ruhr Universität Bochum sowie der Freien Universität Berlin die VEKMAG-Station aufgebaut hat. Aufbau und Fortentwicklung der VEKMAG-Station werden durch das BMBF und das HZB gefördert. 

Durch ferromagnetische Resonanzexperimente an einem so genannten Bragg-Peak zeigte die Forschergruppe damit erstmals experimentell, dass sich alle drei Eigenschwingungen in Cu2OSeO3 ausbilden: Sie beobachteten magnetische Wirbel in drei unterschiedlichen, synchronen Bewegungsmustern, die sich mit dem Uhrzeigersinn oder gegen den Uhrzeigersinn drehen oder sich „atmend“ ausdehnen und zusammenziehen.

Kontrolle durch Mikrowellen

Jedes Bewegungsmuster wird bei einer bestimmten Frequenz des Mikrowellenfeldes erreicht, die vom äußeren Magnetfeld sowie von intrinsischen Parametern der Probe abhängt. Mit Hilfe des Mikrowellenfeldes sind somit Übergänge von einer Eigenschwingung in eine andere möglich. "Das ist ein erster Schritt zur Kontrolle von Skyrmionen", sagt Radu.

Phys. Rev. Lett. (2019): Ferromagnetic Resonance with Magnetic Phase Selectivity by Means of Resonant Elastic X-Ray Scattering on a Chiral Magnet; S. Pöllath, A. Aqeel, A. Bauer, C. Luo, H. Ryll, F. Radu, C. Pfleiderer, G. Woltersdorf, and C. H. Back

DOI:  10.1103/PhysRevLett.123.167201

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.