Mehr Informationen aus Mikroskopie-Abbildungen durch Rechenleistung

Am 27.11.2019 fand am HZB das Auftakttreffen des Helmholtz-Inkubator-Projekts Ptychography 4.0 statt. Sieben Helmholtz-Zentren wollen gemeinsam Methoden der Datenwissenschaft weiter entwickeln, um mehr Informationen aus Elektronen- und Röntgenmikroskopie zu gewinnen. Insbesondere geht es darum, mit „virtuellen Linsen“ Abbildungsfehler zu korrigieren und so das Auflösungsvermögen deutlich zu steigern.

Ptychography 4.0 gehört zu den Pilotprojekten des Inkubator-Förderprogramms im Bereich Information und Datenwissenschaften und wird aus dem Impuls- und Vernetzungsfonds des Präsidenten der Helmholtz-Gemeinschaft mit knapp 1,7 Millionen Euro gefördert. Die Helmholtz-Zentren beteiligen sich mit Eigenmitteln in gleicher Höhe.

„Mit der Ptychographie 4.0 arbeiten wir daran, die Auflösung in der Elektronenmikroskopie, aber auch in der Röntgenmikroskopie deutlich zu steigern, indem wir Abbildungsfehler rechnerisch korrigieren“, erläutert Dr. Markus Wollgarten, der am HZB das CoreLab für Korrelative Spektroskopie und Mikroskopie leitet. So wäre es zum Beispiel möglich, feinste Oberflächenstrukturen in Bakterien oder Viren extrem scharf darzustellen oder neue Materialien wie Graphen atomar genau abzubilden, ohne dass man auf kostspielige Korrektor-Optiken zurückgreifen muss.

Bei konventionellen Mikroskopieverfahren wird Licht (oder ein Elektronenstrahl) durch die Probe geschickt, ein Detektor misst dahinter die verbleibenden Intensitäten und man erhält so ein Bild der Probe. Dabei geht jedoch die wertvolle Information über die probenbedingte Phasenänderung der Strahlung verloren. Bei der Ptychographie 4.0 wird diese Information rechnerisch berücksichtigt und ausgewertet. Dies erfordert zwar Datenraten im Bereich von Gigabyte/Sekunde, erlaubt aber dann, die Probenstruktur mit großer Genauigkeit rechnerisch zu rekonstruieren. Abbildungsfehler des Mikroskops spielen dabei praktisch keine Rolle.

Die Kooperationspartner wollen nun diesen Ansatz weiter entwickeln und die Methode für den Routineeinsatz mit verschiedenen Strahlungsarten, wie beispielsweise Röntgenstrahlung, Elektronen oder XUV Licht, optimieren. Insbesondere soll die Bildrekonstruktion so stark beschleunigt werden, dass Abbildungen in Echtzeit möglich sind.

„Mit Ptychographie 4.0 umgehen wir limitierende Abbildungsfehler, so dass wir auf die sehr kostenintensiven physikalischen Korrektor-Optiken verzichten können – damit werden sich künftig wesentlich mehr Einrichtungen state-of-the-art Hochauflösungsmikroskopie leisten können“, betont Wollgarten.

Partner:
Deutsches Elektronen-Synchrotron (DESY)
Forschungszentrum Jülich (FZJ)
Helmholtz Institut Jena (GSI, HI-Jena)
Helmholtz Zentrum München (HMGU)
Helmholtz-Zentrum Berlin (HZB)
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Helmholtz-Zentrum für Infektionsforschung (HZI)

Koordination:
PD Dr. Wolfgang zu Castell
Helmholtz Zentrum München (HMGU)
castell@helmholtz-muenchen.de
Prof. Dr. Christian Schroer
Deutsches Elektronen-Synchrotron (DESY)
christian.schroer@desy.de

Am HZB sind neben Dr. Markus Wollgarten auch Prof. Dr. Gerd Schneider (Röntgenmikroskopie) sowie Ants Finke (IT-Abteilung) beteiligt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.