Krebsforschung an BESSY II: Bindungsmechanismen von therapeutischen Substanzen entschlüsselt

Auf dem Cover kündigt die Zeitschrift Chemmedchem die Arbeit an.

Auf dem Cover kündigt die Zeitschrift Chemmedchem die Arbeit an. © Chemmedchem/VCH Wiley

In Tumorzellen ist die DNA im Vergleich zu normalen Körperzellen verändert. Wie solche Veränderungen verhindert oder gehemmt werden können, ist ein spannendes Forschungsgebiet mit großer Relevanz für die Entwicklung von Krebsbehandlungen. Ein interdisziplinäres Team hat nun durch Proteinkristallographie an BESSY II die möglichen  Bindungsmechanismen von bestimmten therapeutischen Substanzen aus der Gruppe der Tetrazolhydrazide an ein entscheidendes Protein in der Zelle analysiert.

Bestimmte Proteine wie die Humanen Histon-Demethylasen, darunter auch das Protein KDM4, spielen eine Rolle bei der Entstehung von Tumorzellen. Sie binden an die DNA und verändern sie, so dass die Zelle krebsartig werden kann. Für eine Therapie sind Wirkstoffe interessant, die solche Veränderungen hemmen oder sogar rückgängig machen können.

Der Biochemiker Prof. Dr. Udo Heinemann vom Max-Delbrück Centrum in Berlin-Buch untersucht solche Prozesse. Nun hat er in Zusammenarbeit mit Chemikern um Prof. Dr. Andreas Link von der Uni Greifswald und dem Team um Dr. Manfred Weiss am HZB untersucht, wie und an welchen Stellen bestimmte therapeutische Substanzen aus der Gruppe der Tetrazolhydrazide an diese Proteinmoleküle andocken und so ihre schädliche Wirkung hemmen.

KDM4-Proteinkristalle in Wirkstofflösungen getränkt

Link stellte zunächst Variationen von Tetrazolhydrazid-Substanzen her. Für die Strukturanalyse mussten Kristalle aus KDM4-Proteinen gezüchtet werden – eine schwierige Aufgabe, die Dr. Piotr Malecki und Manfred Weiss am HZB übernommen hatten. Die KDM4-Proteinkristalle wurden im Anschluss in jeweils einer bestimmten Substanz getränkt, bevor sie an den MX-Beamlines von BESSY II mit starkem Röntgenlicht analysiert wurden. Eine verfeinerte Auswertung zeigte nicht nur die dreidimensionale Architektur des KDM4-Proteins, sondern auch, wo genau an dem KDM4-Molekül die aktiven Substanzen angedockt hatten.

Wirkstoff-Design

„Diese Klasse von Substanzen wurde bislang noch nicht strukturell untersucht“, erklärt Manfred Weiss.  Und Udo Heinemann vom MDC führt aus: „Wir werden nun auswerten, wo es Chancen gibt, innerhalb der 3D-Struktur des KDM4 noch stärker anzudocken. Dann können wir möglicherweise auch Wirkstoffe entwickeln, die das KDM4 noch stärker hemmen und damit das Potential zu einem Therapeutikum besitzen.“

Die Arbeit ist erschienen in ChemMedChem (2019):
“Structure-based screening of tetrazolylhydrazide inhibitors vs. KDM4 histone demethylases”, Piotr H. Małecki, Nicole Rüger, Martin Roatsch, Oxana Krylova, Andreas Link, Manfred Jung, Udo Heinemann, Manfred S. Weiss
DOI: 10.1002/cmdc.201900441

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern. 

  • TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Nachricht
    30.05.2025
    TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Am 21. Mai 2025 unterzeichneten die Technische Hochschule Wildau (TH Wildau) und das Helmholtz-Zentrum Berlin einen umfassenden Kooperationsvertrag. Ziel ist es, die Vernetzung und Zusammenarbeit insbesondere in der Grundlagenforschung weiter zu fördern, die wissenschaftliche Exzellenz beider Partner zu steigern und Kompetenznetzwerke in Forschung, Lehre sowie der Ausbildung des wissenschaftlichen Nachwuchses zu entwickeln.

  • Grüner Wasserstoff: MXene steigert die Wirkung von Katalysatoren
    Science Highlight
    29.05.2025
    Grüner Wasserstoff: MXene steigert die Wirkung von Katalysatoren
    An den enorm großen inneren Oberflächen von MXenen können sich katalytisch aktive Partikel anheften. Mit diesem raffinierten Trick lässt sich ein preiswerter und viel effizienterer Katalysator für die Sauerstoffentwicklungsreaktion realisieren, die bei der Erzeugung von grünem Wasserstoff bislang als Engpass gilt. Dies hat eine internationale Forschergruppe um die HZB-Chemikerin Michelle Browne nun in einer aufwendigen Untersuchung nachgewiesen. Die Studie ist in Advanced Functional Materials veröffentlicht.