Cancer research at BESSY II: Binding Mechanisms of Therapeutic Substances Deciphered

The study is displayed on the cover of the journal Chemmedchem.

The study is displayed on the cover of the journal Chemmedchem. © Chemmedchem/VCH Wiley

In tumor cells, the DNA is altered in comparison to normal body cells. How such changes can be prevented or inhibited is an exciting field of research with great relevance for the development of cancer treatments. An interdisciplinary team has now analysed the possible binding mechanisms in certain therapeutic substances from the tetrazole hydrazide group using protein crystallography at BESSY II.

Certain proteins such as human histone demethylases, including the KDM4 protein, play a role in the development of tumour cells. They bind to the DNA and modify it so that the cell can become cancerous. Therapeutic substances that are able to inhibit or even reverse such changes are of particular interest.

Biochemist Prof. Dr. Udo Heinemann from the Max Delbrück Centre in Berlin-Buch is investigating such processes. In cooperation with chemists led by Prof. Dr. Andreas Link from the University of Greifswald and the team led by Dr. Manfred Weiss at the HZB, he has now investigated how and where certain therapeutic substances from the tetrazole hydrazide group dock to these protein molecules and thus inhibit their harmful effect.

KDM4 protein crystals analysed

Link initially produced variations of tetrazole hydrazide substances. For structural analysis, crystals had to be grown from KDM4 proteins - a difficult task that Dr. Piotr Malecki and Manfred Weiss had taken on at the HZB. The KDM4 protein crystals were then soaked in a specific substance before being analyzed with strong X-rays on the MX beamlines of BESSY II. A refined analysis showed not only the three-dimensional architecture of the KDM4 protein, but also exactly where the active substances had docked to the KDM4 molecule.

"This class of substances has not yet been structurally investigated," explains Manfred Weiss.  And Udo Heinemann from the MDC explains: "We will now evaluate where there are opportunities to dock even stronger within the 3D structure of the KDM4. Then we might also be able to develop drugs that inhibit the KDM4 even more and thus have the potential to become a therapeutic."

arö

  • Copy link

You might also be interested in

  • AI in Chemistry: Study Highlights Strengths and Weaknesses
    News
    04.06.2025
    AI in Chemistry: Study Highlights Strengths and Weaknesses
    How well does artificial intelligence perform compared to human experts? A research team at HIPOLE Jena set out to answer this question in the field of chemistry. Using a newly developed evaluation method called “ChemBench,” the researchers compared the performance of modern language models such as GPT-4 with that of experienced chemists. 

  • TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    News
    30.05.2025
    TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    On 21 May 2025, the Technical University of Applied Sciences Wildau (TH Wildau) and the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), signed a comprehensive cooperation agreement. The aim is to further promote networking and cooperation, particularly in basic research, to increase the scientific excellence of both partners and to develop competence networks in research, teaching and the training of young scientists.

  • Green hydrogen: MXene boosts the effectiveness of catalysts
    Science Highlight
    29.05.2025
    Green hydrogen: MXene boosts the effectiveness of catalysts
    MXenes are adept at hosting catalytically active particles. This property can be exploited to create more potent catalyst materials that significantly accelerate and enhance the oxygen evolution reaction, which is one of the bottlenecks in the production of green hydrogen via electrolysis using solar or wind power. A detailed study by an international team led by HZB chemist Michelle Browne shows the potential of these new materials for future large-scale applications. The study is published in Advanced Functional Materials.