Neuer Detektor beschleunigt die Proteinkristallographie
Nur 60 Sek. Messzeit mit dem neuen Detektor reichten schon aus, um die Elektrondichte des PETase-Enzyms zu ermitteln. Sie zeigt alle strukturellen Merkmale des Enzyms. © HZB
Der neue PILATUS-Detektor wurde an der MX-Beamline 14.1 in Betrieb genommen. © HZB
An einer der drei MX-Beamlines am HZB wurde letzte Woche ein neuer Detektor installiert. Im Vergleich zum alten Detektor ist der neue besser, schneller und empfindlicher. Er ermöglicht es, binnen kürzester Zeit vollständige Datensätze von komplexen Proteinen aufzunehmen.
Proteine bestehen aus tausenden von Bausteinen, die komplexe Architekturen mit gefalteten oder verwickelten Bereichen bilden können. Für die Funktion des Proteins im Organismus spielt ihre Gestalt jedoch die entscheidende Rolle. Mit Hilfe der makromolekularen Kristallographie an BESSY II ist es möglich, die Architektur von Proteinmolekülen zu entschlüsseln. Dafür werden winzige Proteinkristalle mit Röntgenlicht aus der Synchrotronquelle BESSY II durchleuchtet. Aus den gewonnenen Beugungsmustern lässt sich die Morphologie der Moleküle errechnen.
Nun hat das MX-Team an BESSY II an der MX-Beamline 14.1 einen neuen Detektor in Betrieb genommen, der zwei- bis dreimal schneller als bisher arbeitet. Als Probe analysierte das Team einen Kristall aus dem Enzym PETase. PETase ist in der Lage, den Kunststoff PET teilweise abzubauen. In weniger als einer Minute konnte der Detektor einen vollständigen Beugungsdatensatz aufzeichnen, der Daten aus einem Winkelbereich von 180 Grad umfasst. Der Datensatz besteht aus 1200 Bildern, die jeweils 45 Millisekunden lang der Röntgenstrahlung ausgesetzt waren. „Die resultierende Elektronendichte war von ausgezeichneter Qualität und zeigte alle strukturellen Merkmale des Enzyms“, erklärt Dr. Manfred Weiss, der das MX-Team an BESSY II leitet.
Der Erfolg der HZB MX-Beamlines wird durch mehr als 3000 PDB-Einträge aus experimenteller Strahlzeit von mehr als hundert internationalen Nutzergruppen aus dem akademischen Bereich und pharmazeutischen Forschungsunternehmen dokumentiert.
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21100;sprache=enA
- Link kopieren
-
Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
-
Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.
-
Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.