Berlins außeruniversitäre Forschungseinrichtungen schließen sich zusammen

Berlin als internationale Wissenschaftsmetropole zu stärken, ist Ziel einer gemeinsamen Initiative der außeruniversitären Forschungseinrichtungen der Hauptstadt. Sie haben sich zur BR 50 (Berlin Research 50) zusammengeschlossen, um künftig gemeinsam Strategien für die Forschung und den Austausch mit Politik und Gesellschaft zu entwickeln. Auch das Helmholtz-Zentrum Berlin hat sich der Initiative angeschlossen. Die Kooperation mit den Berliner Universitäten wird hierdurch erleichtert und verstärkt.

Der neue Verbund, dem fast alle außeruniversitären Institute und Zentren im Berliner Raum angehören, soll die Abstimmung zwischen außeruniversitären Forschungseinrichtungen erleichtern und eine zentrale Anlaufstelle für die Zusammenarbeit mit den Berliner Universitäten und den Austausch mit Gesellschaft und Politik bieten. Ähnlich der Berlin University Alliance (BUA), dem Verbund von Freie Universität Berlin, Humboldt-Universität zu Berlin, Technische Universität Berlin und Charité – Universitätsmedizin Berlin, soll BR 50 darüber hinaus eine Dialogplattform für die beteiligten Institute bereitstellen.

Der Zusammenschluss repräsentiert Forschungsgebiete aus allen wissenschaftlichen Bereichen. Beim Gründungstreffen am 18. Februar im Max Liebermann Haus am Brandenburger Tor wurden Gründungskoordinatorinnen und -koordinatoren für vier Sektionen gewählt: Prof. Dr. Thomas Sommer für Sektion 1 (Lebenswissenschaften), Prof. Dr. h.c. Jutta Allmendinger Ph.D. für Sektion 2 (Sozial- und Geisteswissenschaften), Prof. Dr. Ulrich Panne für Sektion 3 (Naturwissenschaften) und Prof. Dr. Michael Hintermüller für Sektion 4 (Technik- und Ingenieurwissenschaften).

„Schon jetzt leisten die außeruniversitären Einrichtungen mit ihrer exzellenten Forschung einen unverzichtbaren Beitrag für die Profilierung Berlins als führenden internationalen Wissenschaftsstandort“, sagte Thomas Sommer, Gründungskoordinator der Sektion für Lebenswissenschaften und Wissenschaftlicher Vorstand (komm.) des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC). „Mit BR 50 bündeln wir nun unsere Kräfte, um den Berliner Forschungsraum zur Blüte zu bringen.“

Ulrich Panne, Gründungskoordinator der Sektion für Naturwissenschaften und Präsident der Bundesanstalt für Materialforschung und -prüfung (BAM), ergänzt: „Der Austausch zwischen Wissenschaft, Gesellschaft und Politik wird immer wichtiger und BR 50 wird dafür viele wichtige Brücken zwischen den Forschungseinrichtungen in Berlin bauen.“

Auch die Zusammenarbeit mit den Berliner Universitäten wird durch BR 50 gestärkt, erwartet Jutta Allmendinger, Gründungskoordinatorin der Sektion für Sozial- und Geisteswissenschaften und Präsidentin des Wissenschaftszentrums Berlin für Sozialforschung (WZB): „Die große Zahl und Vielfalt der außeruniversitären Forschungseinrichtungen ist eine klare Stärke Berlins. Mit unserem neuen Verbund bieten wir eine zentrale Dialogpartnerin für die Berliner Universitäten, um gemeinsam mit ihnen zukunftsweisende Forschungsprojekte anzustoßen.“

Ein Gründungsmotiv für BR 50 seien die großen Herausforderungen für die Menschheit, so Michael Hintermüller, Gründungskoordinator der Sektion für Technik- und Ingenieurwissenschaften, Direktor des Weierstraß-Instituts für Angewandte Analysis und Stochastik und Vorstandssprecher des Forschungsverbunds Berlin: „Mit dem neuen Verbund können die Forschungseinrichtungen Berlins ihre Synergien besser nutzen, um zusammen Lösungen für die Probleme, die vor uns liegen, zu entwickeln.“

Beim Gründungstreffen haben sich zunächst 41 der außeruniversitären Forschungseinrichtungen Berlins zusammengeschlossen, darunter Institute der großen Wissenschaftsorganisationen Leibniz-Gemeinschaft, Max-Planck-Gesellschaft, Helmholtz-Gemeinschaft und Fraunhofer-Gesellschaft sowie die Ressortforschungsinstitute des Bundes und die Stiftung Preußischer Kulturbesitz.

 

(red)

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.