Neue Helmholtz-Nachwuchsgruppe am HZB

Felix Büttner hat am Brookhaven National Laboratory eine Holographie-Kammer aufgebaut.

Felix Büttner hat am Brookhaven National Laboratory eine Holographie-Kammer aufgebaut. © privat

Ab 01. März 2020 baut Dr. Felix Büttner am HZB eine Helmholtz-Nachwuchsgruppe zu „Topologischen Solitonen“ auf. Topologische Solitonen können in magnetischen Quantenmaterialien auftreten und extrem energieeffiziente Schaltprozesse ermöglichen. An BESSY II will er eine neue Abbildungstechnik entwickeln, um solche Quasiteilchen zu untersuchen. 

Nach einem harten Auswahlverfahren hat Dr. Felix Büttner eine Förderung durch die Helmholtz-Gemeinschaft erhalten, um seine eigene Forschungsgruppe aufzubauen.  Zuletzt hatte er als Postdoktorand am Massachusetts Institute of Technology in Boston zu magnetischen Quantenmaterialien geforscht. Er ist in Fachkreisen durch zahlreiche hochwertige Publikationen bekannt.

Büttner möchte an der Synchrotronquelle BESSY II des HZB eine neue hochauflösende Technik entwickeln, mit der sich komplexe magnetische Strukturen unter Realbedingungen bei Raumtemperatur abbilden und untersuchen lassen. Dabei handelt es sich um antiferromagnetische topologische Solitonen, die in bestimmten Materialien auftreten und als interessante Kandidaten für extrem energieeffiziente Datenspeicher gelten. „Bisher gibt es in der Forschung zu antiferromagnetischen Solitonen aus Mangel an geeigneten Messtechniken wenig Fortschritte“, erklärt Büttner: „Das HZB bietet die nötigen hochkomplexen Instrumente und führende Expertise in all diesen Bereichen und ist daher das perfekte Umfeld für dieses anspruchsvolle Projekt.“ 

 


arö

Das könnte Sie auch interessieren

  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.
  • Jetzt bewerben: Internationales Sommerstudierenden-Programm 2023
    Nachricht
    28.11.2022
    Jetzt bewerben: Internationales Sommerstudierenden-Programm 2023
    Möchtest Du einen großartigen Sommer in Berlin verbringen und einzigartige Erfahrungen in der Forschung sammeln? Dann kommt vom 3. Juli bis 25. August 2023 zu uns! Wir laden Studierende aus der ganzen Welt ein, acht Wochen lang ein eigenes kleines Forschungsprojekt am HZB voranzutreiben. Gewinnt interessante Einblicke und Erfahrungen. Wir freuen uns auf euch!

  • Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Science Highlight
    22.11.2022
    Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.