Neue Helmholtz-Nachwuchsgruppe am HZB

Felix Büttner hat am Brookhaven National Laboratory eine Holographie-Kammer aufgebaut.

Felix Büttner hat am Brookhaven National Laboratory eine Holographie-Kammer aufgebaut. © privat

Ab 01. März 2020 baut Dr. Felix Büttner am HZB eine Helmholtz-Nachwuchsgruppe zu „Topologischen Solitonen“ auf. Topologische Solitonen können in magnetischen Quantenmaterialien auftreten und extrem energieeffiziente Schaltprozesse ermöglichen. An BESSY II will er eine neue Abbildungstechnik entwickeln, um solche Quasiteilchen zu untersuchen. 

Nach einem harten Auswahlverfahren hat Dr. Felix Büttner eine Förderung durch die Helmholtz-Gemeinschaft erhalten, um seine eigene Forschungsgruppe aufzubauen.  Zuletzt hatte er als Postdoktorand am Massachusetts Institute of Technology in Boston zu magnetischen Quantenmaterialien geforscht. Er ist in Fachkreisen durch zahlreiche hochwertige Publikationen bekannt.

Büttner möchte an der Synchrotronquelle BESSY II des HZB eine neue hochauflösende Technik entwickeln, mit der sich komplexe magnetische Strukturen unter Realbedingungen bei Raumtemperatur abbilden und untersuchen lassen. Dabei handelt es sich um antiferromagnetische topologische Solitonen, die in bestimmten Materialien auftreten und als interessante Kandidaten für extrem energieeffiziente Datenspeicher gelten. „Bisher gibt es in der Forschung zu antiferromagnetischen Solitonen aus Mangel an geeigneten Messtechniken wenig Fortschritte“, erklärt Büttner: „Das HZB bietet die nötigen hochkomplexen Instrumente und führende Expertise in all diesen Bereichen und ist daher das perfekte Umfeld für dieses anspruchsvolle Projekt.“ 

 


arö


Das könnte Sie auch interessieren

  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.
  • BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Science Highlight
    07.02.2024
    BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Fumarat, Maleat und Succinat sind organische Moleküle, die in der Koordinationschemie und teilweise auch in der Biochemie der Körperzellen eine Rolle spielen. Ein HZB-Team hat diese Moleküle nun an BESSY II mit Hilfe von RIXS und DFT-Simulationen analysiert. Die Ergebnisse geben nicht nur Aufschluss über die elektronischen Strukturen, sondern auch über die relative Stabilität dieser Moleküle. Dies könnte auch der Industrie dabei helfen, die Stabilität von Koordinationspolymeren zu optimieren.
  • BESSY II: Lokale Variationen in der Struktur von hochentropischen-Legierungen
    Science Highlight
    30.01.2024
    BESSY II: Lokale Variationen in der Struktur von hochentropischen-Legierungen
    Hochentropie-Legierungen halten extremer Hitze und Belastung stand und eignen sich daher für eine Vielzahl spezifischer Anwendungen. Einblicke in Ordnungsprozesse und Diffusionsphänomene in diesen Materialien hat nun eine neue Studie an der Röntgenquelle BESSY II geliefert. An der Studie waren Teams des HZB, der Bundesanstalt für Materialforschung und -prüfung, der Universität Lettland und der Universität Münster beteiligt.