New Helmholtz Young Investigator Group at HZB

Felix Büttner has set up a holography chamber at Brookhaven National Laboratory.

Felix Büttner has set up a holography chamber at Brookhaven National Laboratory. © privat

Dr. Felix Büttner will establish a Helmholtz Young Investigator Group (YIG) on topological solitons at the HZB beginning in March 2020. Topological solitons occur in magnetic quantum materials and can contribute to extremely energy-efficient switching processes. Büttner wants to develop a new imaging technique at BESSY II to study these quasi-particles.

Dr. Felix Büttner has received funding from the Helmholtz Association following a tough selection process. He will now build up his own research group, a Helmholtz Young Investigator Group (YIG).

Until now, he was doing research as a postdoc at the Massachusetts Institute of Technology in Cambridge, MA, USA.  Büttner has already distinguished himself with numerous publications in the field of magnetic quantum materials.

At the HZB, he wants to develop a new high-resolution technique at the BESSY II synchrotron source that will enable the imaging of complex magnetic structures under realistic conditions at room temperature.

He will focus on antiferromagnetic topological solitons that occur in certain materials and are considered important candidates for extremely energy-efficient data storage. “There has been little progress in antiferromagnetic soliton research so far due to a lack of high-resolution imaging techniques that can detect antiferromagnetic topological solitons in actual devices”, Büttner explains and adds: “The HZB offers high-tech facilities and expertise in all these areas, making it the perfect place for this ambitious project.

arö


You might also be interested in

  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.