Neutronenforschung: Magnetische Monopole in Kagome-Spin-Eis-Systemen nachgewiesen

In HoAgGe besetzten Holmium-Spins die Ecken von Dreiecken, die zu einem Kagome-Muster geordnet sind. Die Ausrichtung benachbarter Spins (links, rote Pfeile) muss dabei der Eisregel gehorchen: Entweder ragen zwei Spins in ein Dreieck hinein und eins hinaus oder umgekehrt. Als Resultat verhalten sich die einzelnen Dreiecke, als wären sie magnetische Monopole (rechts).

In HoAgGe besetzten Holmium-Spins die Ecken von Dreiecken, die zu einem Kagome-Muster geordnet sind. Die Ausrichtung benachbarter Spins (links, rote Pfeile) muss dabei der Eisregel gehorchen: Entweder ragen zwei Spins in ein Dreieck hinein und eins hinaus oder umgekehrt. Als Resultat verhalten sich die einzelnen Dreiecke, als wären sie magnetische Monopole (rechts). © Uni Augsburg

Magnetische Monopole sind eigentlich unmöglich. Bei tiefen Temperaturen können sich jedoch in bestimmten Kristallen so genannte Quasiteilchen zeigen, die sich wie magnetische Monopole verhalten. Nun hat eine internationale Kooperation nachgewiesen, dass solche Monopole auch in einem Kagome-Spin-Eis-System auftreten. Ausschlaggebend waren unter anderem auch Messungen mit inelastischer Neutronenstreuung am Instrument NEAT der Berliner Neutronenquelle BER II*. Die Ergebnisse sind in der Fachzeitschrift Science erschienen.

Magnetische Monopole wurden weltweit erstmals 2008 an der Berliner Neutronenquelle nachgewiesen. Damals handelte es sich um ein dreidimensionales Spinsystem in einer Dysprosium-Verbindung. Vor rund 10 Jahren konnten Monopol-Quasiteilchen auch in zwei-dimensionalen Spin-Eis-Materialien nachgewiesen werden, die aus tetraedrischen Kristall-Einheiten bestanden. Diese Spin-Eis-Materialien waren jedoch elektrische Isolatoren.

Kooperation zeigt: auch metallische Proben zeigen Monopole

Dr. Kan Zhao und Prof. Philipp Gegenwart von der Universität Augsburg haben nun zusammen mit Teams aus dem Heinz-Meier-Leibnitz-Zentrum, dem Forschungszentrum Jülich, der University of Colorado, der Akademie der Wissenschaften in Prag sowie dem Helmholtz-Zentrum Berlin erstmals gezeigt, dass auch eine metallische Verbindung solche magnetischen Monopole ausbilden kann. Das Team in Augsburg stellte dafür kristalline Proben aus den Elementen Holmium, Silber und Germanium her. In den HoAgGe-Kristallen bilden die magnetischen Momente (Spins) der Holmium-Atome ein so genanntes zweidimensionales Kagome-Muster. Dieser Name kommt von der japanischen Kagome-Flechtkunst, bei der die Flechtbänder nicht rechtwinklig miteinander verwoben sind, sondern so, dass sich dreieckige Muster bilden.

Kagome-Spin-Eis: Frustration für die Spins

Im Kagome-Muster können sich die Spins benachbarter Atome nicht wie üblich jeweils gegenläufig zueinander ausrichten. Stattdessen gibt es zwei zulässige Spin-Konfigurationen: Entweder zeigen die Spins von zwei der drei Atome genau zum Dreiecks-Zentrum, die des dritten dagegen aus dem Zentrum heraus. Oder es ist genau umgekehrt: Ein Spin zeigt zum Zentrum, die beiden anderen aus ihm heraus. Dies beschränkt die Möglichkeiten der Spin-Anordnungen – daher auch der Name „Kagome-Spin-Eis.“ Eine Folge davon ist, dass sich dieses System so verhält, als ob in ihm magnetische Monopole vorliegen würden.

Kagome-Spin-Eis in realem System beobachtet

Dieses Verhalten konnte nun die Kooperation um die Augsburger Forscher erstmals auch experimentell in HoAgGe-Kristallen nachweisen. Sie kühlten die Proben stark ab und untersuchten sie unter verschieden starken, äußeren Magnetfeldern. Einen Teil der Experimente führten die Wissenschaftler am Heinz Maier-Leibnitz Zentrum in Garching bei München durch. Dabei wurden sie von der Abteilung Probenumgebung des HZB unterstützt, die einen supraleitenden Kryomagneten für die Experimente am FRM-II zur Verfügung stellte.

Energiespektrum am NEAT des BER II

So konnten sie unterschiedliche Spin-Anordnungen erzeugen, die in einem Kagome-Spin-Eis erwartet werden. Modellrechnungen aus dem Augsburger Forschungsteam zeigten, wie das Energiespektrum der Spins aussehen sollte. Dieses Energiespektrum der Spins konnte dann mit der Methode der inelastischen Neutronenstreuung am Instrument NEAT an der Berliner Neutronenquelle vermessen werden. „Das war der letzte Baustein für den Nachweis der magnetischen Monopole in diesem System. Die Übereinstimmung mit den theoretisch vorhergesagten Spektren ist wirklich sehr groß“ sagt Dr. Margarita Russina, die am HZB für das NEAT-Instrument verantwortlich ist.

Die Arbeit wurde in Science (2020) publiziert:

FRUSTRATED MAGNETISM - Realization of the kagome spin ice state in a frustrated intermetallic compound; Kan Zhao, Hao Deng, Hua Chen, Kate A. Ross, Vaclav Petricek, Gerrit Günther, Margarita Russina, Vladimir Hutanu, Philipp Gegenwart

DOI: 10.1126/science.aaw1666

* Die Berliner Neutronenquelle wurde im Dezember nach 46 Jahren erfolgreichen Betriebs 2019 planmäßig abgeschaltet. Bis dahin wurde die Messzeit optimal für die Forschung genutzt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.