Nutzerforschung an BESSY II: Neue Materialien steigern die Effizienz in Ethanol-Brennstoffzellen

Das Material besteht aus Nafion mit eingebetten Nanopartikeln.

Das Material besteht aus Nafion mit eingebetten Nanopartikeln. © B.Matos/IPEN

Eine Gruppe aus Brasilien hat mit einem HZB-Team eine neuartige Kompositmembran für Ethanol-Brennstoffzellen untersucht. Sie besteht aus dem Polymer Nafion, in das durch Schmelzextrusion Titanat-Nanopartikel eingebettet sind. An BESSY II konnten sie beobachten, wie die Nanopartikel in der Nafion-Matrix verteilt sind und wie sie die Protonenleitfähigkeit steigern.

Ethanol besitzt eine fünfmal höhere volumetrische Energiedichte als Wasserstoff und lässt sich gefahrlos in geeigneten Brennstoffzellen zur Stromerzeugung nutzen. Insbesondere in Brasilien besteht großes Interesse an Brennstoffzellen für Ethanol, das dort kostengünstig aus Zuckerrohr hergestellt werden kann. Theoretisch könnte der Wirkungsgrad einer Ethanol-Brennstoffzelle 96 Prozent betragen, aber in der Praxis liegt er selbst bei der höchsten Leistungsdichte nur bei 30 Prozent. Es gibt also noch viel Raum für Verbesserungen.

Nafion mit Nanopartikeln

Ein Team um Dr. Bruno Matos vom brasilianischen Forschungsinstitut IPEN erforscht deshalb neuartige Kompositmembranen für Direktethanol-Brennstoffzellen. Diese Kompositmembranen sollen die Polymerelektrolyten wie Nafion ersetzen. Matos und sein Team stellten nun mit einem Schmelzextrusionsverfahren Kompositmembranen auf der Basis von Nafion her. Dabei wurden in die Nafion-Matrix Titanat-Nanopartikel eingebettet, welche mit Sulfonsäuregruppen funktionalisiert wurden.

Protonenleitfähigkeit steigt

Matos und sein Team haben nun vier verschiedene Varianten dieser neuartigen Materialien an der Infrarot-Beamline IRIS bei BESSY II analysiert. Mit Infrarotspektroskopie beobachteten sie, dass sich chemische Brücken zwischen den Sulfonsäuregruppen der funktionalisierten Nanopartikel bildeten. Darüber hinaus stellten sie fest, dass die Protonenleitfähigkeit in der Kompositmembran erhöht war, selbst bei hohen Konzentrationen von Nanopartikeln.

Große Überraschung

"Das war eine echte Überraschung, die wir nicht erwartet hatten", sagt Dr. Ljiljana Puskar, HZB-Wissenschaftlerin an der IRIS-Beamline. Denn bisher war eine der Haupthürden bei der Entwicklung von Hochleistungsverbundwerkstoffen die Tatsache, dass sich mit steigender Konzentration der Nanopartikel die Protonenleitfähigkeit verringert. Die höhere Protonenleitfähigkeit könnte eine bessere Ladungsträgermobilität ermöglichen und damit die Effizienz der Direktethanol-Brennstoffzelle erhöhen.

"Diese Kompositmembran kann durch Schmelzextrusion hergestellt werden, was ihre Herstellung im industriellen Massstab ermöglichen würde", betont Matos.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.
  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.