Nutzerforschung an BESSY II: Bildung eines 2D metastabilen Oxids in reaktiven Umgebungen

Darstellung der beschriebenen, auf AgCu in oxidierenden Umgebungen gebildeten Cu<sub>x</sub>O<sub>y</sub>-Struktur.

Darstellung der beschriebenen, auf AgCu in oxidierenden Umgebungen gebildeten CuxOy-Struktur. © (2020) ACS Publishing

In vielen Anwendungen der Katalyse, bei chemischen Sensoren, Brennstoffzellen und Elektroden spielt das chemische Verhalten von Festkörperoberflächen eine wichtige Rolle. Ein Forscherteam des Max-Planck-Instituts für chemische Energiekonversion hat an der Synchrotronstrahlungsquelle BESSY II nun ein wichtiges Phänomen beschrieben, das auftreten kann, wenn Metalllegierungen reaktiven Umgebungen ausgesetzt werden.  

Befinden sich Metalllegierungen in reaktiven Umgebungen, so können sich 2D metastabile Oxide auf ihren Oberflächen bilden. Solche Oxide weisen chemische und elektronische Eigenschaften auf, die sich von denen ihrer Volumen-Pendants deutlich unterscheiden können. Aufgrund ihrer Metastabilität ist ihre Existenz auch mittels theoretischer Methoden oft schwer vorhersehbar.

In der Publikation stellen die Forscher die Ergebnisse einer ausführlichen Untersuchung eines solchen Oxids vor. Die Untersuchungen wurden mittels der In-situ-Photonelektronenspektroskopie an der ISISS Beamline und der UE49-PGM Beamline an BESSY II durchgeführt. Damit bestätigen die Forscher die Existenz von 2D metastabilen Oxiden, die zuvor mit theoretischen Berechnungen vorausgesagt wurde. Die Forschungsergebnisse tragen zum besseren Verständnis der Komplexität von festen Oberflächen in reaktiven Umgebungen bei. Sie sind kürzlich in der Fachzeitschrift ACS Materials & Interfaces veröffentlicht worden.

Die interdisziplinäre Forschungsarbeit geht aus einer Kollaboration zwischen dem Max-Planck-Institut für Chemische Energiekonversion, dem Max-Planck-Institut für Eisenforschung, dem Fritz-Haber-Institut der Max-Planck-Gesellschaft, dem Helmholtz Zentrum Berlin und dem Italian Reaseach Council Insitute of Materials (CNR-IOM) hervor.

(sz/Max-Planck-Institut für chemische Energiekonversion)

  • Link kopieren

Das könnte Sie auch interessieren

  • Was die Zinkkonzentration in Zähnen verrät
    Science Highlight
    19.02.2026
    Was die Zinkkonzentration in Zähnen verrät
    Zähne sind Verbundstrukturen aus Mineralien und Proteinen, dabei besteht der Großteil des Zahns aus Dentin, einem knochenartigen, hochporösen Material. Diese Struktur macht Zähne sowohl stark als auch empfindlich. Neben Kalzium und Phosphat enthalten Zähne auch Spurenelemente wie Zink. Mit komplementären mikroskopischen Verfahren hat ein Team der Charité Berlin, der TU Berlin und des HZB die Verteilung von natürlichem Zink im Zahn ermittelt. Das Ergebnis: mit zunehmender Porosität des Dentins in Richtung Pulpa steigt die Zinkkonzentration um das 5- bis 10-fache. Diese Erkenntnis hilft, den Einfluss von zinkhaltigen Füllungen auf die Zahngesundheit besser zu verstehen und könnte Verbesserungen in der Zahnmedizin anstoßen.
  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.