Nutzerforschung an BESSY II: Bildung eines 2D metastabilen Oxids in reaktiven Umgebungen

Darstellung der beschriebenen, auf AgCu in oxidierenden Umgebungen gebildeten Cu<sub>x</sub>O<sub>y</sub>-Struktur.

Darstellung der beschriebenen, auf AgCu in oxidierenden Umgebungen gebildeten CuxOy-Struktur. © (2020) ACS Publishing

In vielen Anwendungen der Katalyse, bei chemischen Sensoren, Brennstoffzellen und Elektroden spielt das chemische Verhalten von Festkörperoberflächen eine wichtige Rolle. Ein Forscherteam des Max-Planck-Instituts für chemische Energiekonversion hat an der Synchrotronstrahlungsquelle BESSY II nun ein wichtiges Phänomen beschrieben, das auftreten kann, wenn Metalllegierungen reaktiven Umgebungen ausgesetzt werden.  

Befinden sich Metalllegierungen in reaktiven Umgebungen, so können sich 2D metastabile Oxide auf ihren Oberflächen bilden. Solche Oxide weisen chemische und elektronische Eigenschaften auf, die sich von denen ihrer Volumen-Pendants deutlich unterscheiden können. Aufgrund ihrer Metastabilität ist ihre Existenz auch mittels theoretischer Methoden oft schwer vorhersehbar.

In der Publikation stellen die Forscher die Ergebnisse einer ausführlichen Untersuchung eines solchen Oxids vor. Die Untersuchungen wurden mittels der In-situ-Photonelektronenspektroskopie an der ISISS Beamline und der UE49-PGM Beamline an BESSY II durchgeführt. Damit bestätigen die Forscher die Existenz von 2D metastabilen Oxiden, die zuvor mit theoretischen Berechnungen vorausgesagt wurde. Die Forschungsergebnisse tragen zum besseren Verständnis der Komplexität von festen Oberflächen in reaktiven Umgebungen bei. Sie sind kürzlich in der Fachzeitschrift ACS Materials & Interfaces veröffentlicht worden.

Die interdisziplinäre Forschungsarbeit geht aus einer Kollaboration zwischen dem Max-Planck-Institut für Chemische Energiekonversion, dem Max-Planck-Institut für Eisenforschung, dem Fritz-Haber-Institut der Max-Planck-Gesellschaft, dem Helmholtz Zentrum Berlin und dem Italian Reaseach Council Insitute of Materials (CNR-IOM) hervor.

(sz/Max-Planck-Institut für chemische Energiekonversion)

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.