Mit neuem kompakten Messgerät opto-elektronische Bauteile optimieren

Kompakt und sehr vielseitig einsetzbar: Der neue LumY Pro bestimmt die Lumineszenz-Effizienz von einzelnen Schichten, Schichtstapeln und ganzen Bauteilen.

Kompakt und sehr vielseitig einsetzbar: Der neue LumY Pro bestimmt die Lumineszenz-Effizienz von einzelnen Schichten, Schichtstapeln und ganzen Bauteilen.

Um effiziente opto-elektronische Bauteile wie Solarzellen oder LEDs zu entwickeln, ist es entscheidend, die Qualität der eingesetzten Halbleiter zu verbessern. Dafür ist es notwendig, die Lumineszenz-Ausbeute des Halbleiter-Materials zu ermitteln. Für diese Charakterisierung hat ein Forscherteam am HZB ein neues Messgerät entwickelt, das die Lumineszenz präzise bestimmt und das obendrein sehr kompakt ist. Um das Potenzial für kommerzielle Anwendungen auszuloten, erhält das Team nun eine Field Study Fellowship der Helmholtz-Gemeinschaft.

Ein Forscherteam aus dem HZB hat bereits einen funktionierenden Prototyp des Messgeräts gebaut, der nun zu einem kommerziellen Produkt weiterentwickelt werden soll. Es will damit das für ihre eigene Forschung entwickelte und optimierte Messsystem „LumY Pro“ einem weiten Anwenderkreis zur Verfügung stellen – ganz im Sinne des Technologie- und Wissenstransfers. Im Blick haben die Forscher vor allem Anwender aus der Forschung und Industrie, die an der Weiterentwicklung von opto-elektronischen Bauteilen wie Solarzellen und LEDs arbeiten.

Das Messgerät „LumY Pro“ ist kleiner als ein Schuhkarton (20x22x12 cm) und lässt sich damit auch in der Schutzatmosphäre einer Glovebox (Handschuhkasten) einsetzen. Es misst die Menge eingestrahlter Photonen oder eingebrachter Elektronen und die Menge der durch Anregung emittierten Photonen einer Probe (absolute Photonen- oder Elektrolumineszenz). Dadurch können die Forscher Rückschlüsse auf die Ladungsträgerdichte im Absorber ziehen und detailliert betrachten, wo es zu Verlusten im Bauteil kommt.

Qualität von Bauteilen, Schichtstapeln und einzelne Schichten bestimmen

Untersuchen lassen sich damit einzelne Schichten, aber auch Schichtstapel und komplette Bauteile bei flexibel einstellbaren Lichtintensitäten und elektrischen Spannungen. Die detaillierte Analyse ist dabei in einer eigens entwickelten Mess- und Auswertungssoftware integriert. Die Software und der Prototyp des Systems wurden in Zusammenarbeit mit dem Helmholtz Innovation Lab HySPRINT bereits erfolgreich an verschiedenen Halbleitern getestet.

Einsetzbar für viele Halbleitermaterialien - Auswertungssoftware integriert

Einsetzen lässt sich „LumY Pro“ unter anderem für die Qualitätsbestimmung organisch-anorganischer Perowskite, aber auch anderer Halbleitermaterialien wie Kesterite oder Galliumarsenid. Das Entwicklerteam hofft damit, Forschung und Entwicklung solcher opto-elektronischer Bauteile beschleunigen und den Ressourcenverbrauch dabei verringern zu können. Das Potenzial ist groß, denn allein an Solarzellen aus Perowskiten arbeiten mehr als 400 Arbeitsgruppen weltweit.

„Ein präzises Messsystem, das all diese Charakterisierungsmöglichkeiten in sich vereint, fehlt am Markt derzeit. Wir wollen dies nun in einem kompakten, vielseitigen und dennoch einfach zu bedienenden Produkt realisieren“, sagt Dr. Lukas Kegelmann aus dem Projektteam. Die Feldstudie soll nun zeigen, wie groß das Marktpotenzial ist und welche Einsatzzwecke und Funktionalitäten für die Anwender aus der Forschung und Industrie besonders interessant sind.   

Entwickelt wurde Messsystem und dessen Methodik von Wissenschaftlern der HZB-Gruppen um Dr. Thomas Unold, Dr. Eva Unger und Prof. Dr. Steve Albrecht.

 

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.