Start für neues Katalyse-Zentrum in Adlershof
Das neue CatLab (blaue Fläche) soll in unmittelbarer Nähe zu BESSY II und weiteren Laboren gebaut werden. © HZB
Mit einem interdisziplinären Architekturwettbewerb startet das Helmholtz-Zentrum Berlin (HZB) ein großes neues Vorhaben: Ein innovatives Labor- und Bürogebäude für die Katalyseforschung, in dem die wissenschaftliche Zusammenarbeit des HZB mit der Max-Planck-Gesellschaft (MPG) ausgebaut werden soll. Das Catlab soll zum internationalen Leuchtturm für die Katalyseforschung werden und die Entwicklung neuartiger Katalysatormaterialien vorantreiben, die für die Energiewende dringend benötigt werden.
Mit einem Architekturwettbewerb lädt das Helmholtz-Zentrum Berlin (HZB) Architektur- und Ingenieurbüros dazu ein, ein innovatives Büro- und Laborgebäude zu entwerfen, das Forschung auf höchstem Niveau ermöglicht. Das Gebäude soll den Nachhaltigkeitskriterien des Bundes genügen und weitgehend CO2-neutral sein.
Katalysatoren für die Energiewende
Das neue Gebäude ermöglicht die substantielle Stärkung der Forschung und Entwicklung im Bereich der Katalyse entlang der gesamten Innovationskette. Für die Energiewende spielen neuartige Katalysatormaterialien eine zentrale Rolle, um fossile Kraftstoffe durch Wasserstoff und synthetische Kraftstoffe zu ersetzen, welche mit erneuerbarer Energie produziert werden können.
Kooperation mit Max-Planck-Instituten
Daher starten das HZB, das Max-Planck-Institut für Chemische Energiekonversion und das Fritz-Haber-Institut der MPG das Langzeitvorhaben CatLab in Berlin. Mit CatLab wollen die Partner am Standort Adlershof die Entwicklung von energierelevanten Katalysatoren international vorantreiben. Dabei ermöglicht die räumliche Nähe zu der Synchrotronquelle BESSY II und den Laboratorien mit ihren vielfältigen Analyse- und Charakterisierungsoptionen große Synergieeffekte.
Modularer Aufbau
Standort des Gebäudes ist die Magnusstraße 10 in Berlin-Adlershof. Ein wesentliches Merkmal des Gebäudes muss seine modulare Erweiterbarkeit sein. Labor- und Büroflächen sollen nahtlos mit einem Innovation Center und einer Data Science-Plattform integriert werden. Die für CatLab essentiellen Labor- und Büroanforderungen sollten mit der ersten Bauphase abgedeckt werden. Zwei weitere Gebäudeabschnitte sind vorgesehen, um den mit CatLab intensivierten Forschungsaktivitäten im Bereich Data Science einen Sitz zu geben und einen Ankerpunkt für weitere größere Industriekooperationen und Raum für Innovationen bis hin zur Anwendungsreife zu etablieren.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21600;sprache=de/
- Link kopieren
-
BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
-
Ein innerer Kompass für Meereslebewesen im Paläozän
Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
-
Was vibrierende Moleküle über die Zellbiologie verraten
Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.