Neue Molekülbibliothek für systematische Suche nach Wirkstoffen

Für die Studie wurde u.a. das Enzym Endothiapepsin (grau) mit Molekülenaus der Fragmentibliothek in Kontakt gebracht. Die Analysen zeigen nun,dass zahlreiche Substanzen (blaue und orange Moleküle) an das Enzym andocken.Jede gefundene Substanz ist einpotentieller Startpunkt für die Entwicklung größerer Moleküle.

Für die Studie wurde u.a. das Enzym Endothiapepsin (grau) mit Molekülenaus der Fragmentibliothek in Kontakt gebracht. Die Analysen zeigen nun,dass zahlreiche Substanzen (blaue und orange Moleküle) an das Enzym andocken.Jede gefundene Substanz ist einpotentieller Startpunkt für die Entwicklung größerer Moleküle. © J. Wollenhaupt/HZB

Die Fragmentbibliotheken, die das MX-Team gemeinsam mit einer Gruppe der Uni Marburg aufgebaut hat, stehen auch den Nutzern an BESSY II zur Verfügung. Die Grafik zeigt den Ablauf der Untersuchung.

Die Fragmentbibliotheken, die das MX-Team gemeinsam mit einer Gruppe der Uni Marburg aufgebaut hat, stehen auch den Nutzern an BESSY II zur Verfügung. Die Grafik zeigt den Ablauf der Untersuchung. © HZB

Um die systematische Entwicklung von Medikamenten zu beschleunigen, hat das MX-Team am Helmholtz-Zentrum Berlin (HZB) mit der Drug Design Gruppe der Universität Marburg eine neue Substanzbibliothek aufgebaut. Sie besteht aus 1103 organischen Molekülen, die als Bausteine von neuen Wirkstoffen infrage kommen. Das MX-Team hat diese Bibliothek nun in Kooperation mit der FragMAX-Gruppe am MAX IV validiert. Die Substanzbibliothek des HZB steht weltweit für die Forschung zur Verfügung und spielt auch bei der Suche nach Wirkstoffen gegen SARS-CoV-2 eine Rolle.

Damit Medikamente wirken, müssen sie in der Regel an Proteine im Organismus andocken. Wie ein Schlüssel ins Schloss muss ein Teil des Wirkstoffmoleküls in Vertiefungen oder Hohlräume des Zielproteins passen. Seit einigen Jahren arbeitet das Team der Abteilung Makromolekulare Kristallographie (MX) am HZB um Dr. Manfred Weiss zusammen mit der Gruppe Drug-Design um Prof. Dr. Gerhard Klebe (Uni Marburg) daher am Aufbau von sogenannten Fragment-Bibliotheken. Sie bestehen aus kleinen organischen Molekülen (Fragmenten), mit denen sich die funktionell wichtigen Hohlräume und Vertiefungen auf der Oberfläche von Proteinen ausloten und kartieren lassen. Proteinkristalle werden dafür mit den Fragmenten getränkt und anschließend mit starkem Röntgenlicht analysiert. Dadurch lassen sich 3D-Strukturinformationen mit atomarer Auflösung ermitteln. Unter anderem kann man so herausfinden, wie gut ein bestimmtes Molekülfragment am Zielprotein andockt. Der Aufbau dieser Substanzbibliotheken fand im Rahmen des Verbrundforschungsprojekts Frag4Lead statt und wurde durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Das MX-Team (MX steht für Makromolekulare Kristallographie) hat nun das Design einer chemisch vielfältigen Fragmentbibliothek publiziert, die als „F2X-Universal“- Bibliothek bezeichnet wird und aus 1103 Verbindungen besteht. Aus dieser Bibliothek wurde eine repräsentative Auswahl von 96 Verbindungen extrahiert, die als F2X-Entry-Screen bezeichnet wird. Diese Auswahl ist nun im Zug dieser Publikation erfolgreich durch das MX-Team des HZB an der Röntgenquelle MAX IV in Lund, Schweden und am BESSY II getestet worden.

In der Studie verifizierten die Teams von HZB und MAX IV die Effizienz der F2X-Entry-Bibliothek durch Screening der Zielenzyme Endothiapepsin und des Aar2/Rnase-H-Komplexes. Im nächsten Schritt werden die Forscher des MX-Teams auch die gesamte Universalbibliothek zum Einsatz bringen.

"Für diese Studie haben die Berliner Fragment-Screening-Experten von HZB-BESSY II sehr eng mit dem FragMAX-Projekt-Team von MAX IV zusammen gearbeitet", sagte Dr. Uwe Müller, vom MX-Team am HZB, der sowohl die drei MX-Beamlines an BESSY II als auch die BioMAX-Beamline an MAX IV mit aufgebaut hat. "Dabei konnten beide Partner ihre eigenen Technologie-Plattformen weiterentwickeln und zur Abbildung der funktionellen Oberflächen verschiedener Proteine einsetzen. Dies ist eine hervorragende Grundlage für zukünftige Kooperationen zwischen MAX IV und dem HZB“.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.