Mathematical tool helps calculate properties of quantum materials more quickly

Intelligent mathematical tools for the simulation of spin systems reduce the computing time required on supercomputers. Some of the fastest supercomputers in the world are currently located at Forschungszentrum Jülich (shown here is JUWELS).

Intelligent mathematical tools for the simulation of spin systems reduce the computing time required on supercomputers. Some of the fastest supercomputers in the world are currently located at Forschungszentrum Jülich (shown here is JUWELS). © Forschungszentrum Jülich/Sascha Kreklau

Many quantum materials have been nearly impossible to simulate mathematically because the computing time required is too long. Now a joint research group at Freie Universität Berlin and the Helmholtz-Zentrum Berlin (HZB) has demonstrated a way to considerably reduce the computing time. This could accelerate the development of materials for energy-efficient IT technologies of the future.

Supercomputers around the world work around the clock on research problems. In principle, even novel materials can be simulated in computers in order to calculate their magnetic and thermal properties as well as their phase transitions. The gold standard for this kind of modelling is known as the quantum Monte Carlo method.

Wave-Particle Dualism

However, this method has an intrinsic problem: due to the physical wave-particle dualism of quantum systems, each particle in a solid-state compound not only possesses particle-like properties such as mass and momentum, but also wave-like properties such as phase. Interference causes the “waves“ to be superposed on each other, so that they either amplify (add) or cancel (subtract) each other locally. This makes the calculations extremely complex. It is referred to the sign problem of the quantum Monte Carlo method.

Minimisation of the problem

“The calculation of quantum material characteristics costs about one million hours of CPU on mainframe computers every day“, says Prof. Jens Eisert, who heads the joint research group at Freie Universität Berlin and the HZB. “This is a very considerable proportion of the total available computing time.“ Together with his team, the theoretical physicist has now developed a mathematical procedure by which the computational cost of the sign problem can be greatly reduced. “We show that solid-state systems can be viewed from very different perspectives. The sign problem plays a different role in these different perspectives. It is then a matter of dealing with the solid-state system in such a way that the sign problem is minimised“, explains Dominik Hangleiter, first author of the study that has now been published in Science Advances.

From simple spin systems to more complex ones

For simple solid-state systems with spins, which form what are known as Heisenberg ladders, this approach has enabled the team to considerably reduce the computational time for the sign problem. However, the mathematical tool can also be applied to more complex spin systems and promises faster calculation of their properties.

“This provides us with a new method for accelerated development of materials with special spin properties“, says Eisert. These types of materials could find application in future IT technologies for which data must be processed and stored with considerably less expenditure of energy.

 

Science Advances 2020: Easing the Monte Carlo sign problem; Dominik Hangleiter, Ingo Roth, Daniel Nagaj, Jens Eisert

Doi: 10.1126/sciadv.abb8341

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.