Molekulare Architektur: Neue Materialklasse für Energiespeicher von morgen

Struktur vom TUB75: die gesamte MOF-Architektur (oben) und ihre leitfähige anorganische Baueinheit (unten)

Struktur vom TUB75: die gesamte MOF-Architektur (oben) und ihre leitfähige anorganische Baueinheit (unten) © HZB

Forscher der Technischen Universität Berlin haben eine neue Familie von Halbleitern geschaffen, die vom Helmholtz-Zentrum Berlin (HZB) auf ihre Eigenschaften hin untersucht wurde. Den ersten Vertreter tauften sie auf den Namen TUB75. Das Material gehört zur Klasse der Metallorganischen Frameworks, kurz MOFs. Es könnte neue Perspektiven für die Energiespeicherung eröffnen. Die Arbeit wurde in Advanced Materials publiziert.

„TUB75 ist das erste halbleitende Phosphonat-MOF in der Literatur. Es ebnet den Weg für eine neue Familie von Halbleitern mit einer extrem reichen Strukturchemie“, sagt Gündoğ Yücesan. Der Chemiker und sein Team von der TU Berlin haben das neue Material designt und synthetisiert. Am HZB Quantum Material CoreLab hat die Forschungsgruppe um Konrad Siemensmeyer die magnetischen Eigenschaften untersucht: mit überraschenden Erkenntnissen.

„Schon sehr lange suchen Materialwissenschaftler auf der ganzen Welt nach organischen magnetischen Materialien“, sagt Siemensmeyer. „Sie sind extrem selten und zeigen oft nur bei sehr tiefen Temperaturen magnetische Eigenschaften.“ Bei TUB75 ist das anders.

„Wir konnten eindimensionale Spinketten nachweisen. Die Spins, also der jeweilige Eigendrehimpuls eines Atoms und damit sein magnetisches Moment, sind hier in einer Reihe angeordnet.“ Das ist zum Beispiel für die Nanoelektronik interessant. Nicht mehr elektrische Ladungen sollen zur Informationsverarbeitung genutzt werden, sondern magnetische Spins. „Die Wechselwirkungen sind theoretisch gut beschrieben“, fügt Siemensmeyer hinzu. Eine Gruppe kanadischer Wissenschaftler hat für die neu entdeckte Materialklasse Modelle entwickelt, mit der sie die Verteilung der Momente und der Wechselwirkungen erklären können.

Auch wenn die magnetischen Eigenschaften für eine solch komplexe Substanz überraschen, sind sie doch nur ein kleiner Aspekt der facettenreichen, neuen Materialklasse. „Aufgrund ihrer reichhaltigen Strukturchemie sowie der außergewöhnlich hohen thermischen und chemischen Stabilität könnte die neue Materialfamilie zu Elektrodenmaterialien der nächsten Generation werden“, erklärt Yücesan. Denn im Vergleich zu Aktivkohleelektroden kann die Oberfläche größer gestaltet und an die jeweiligen Anwendungen angepasst werden.

"Großes Potenzial sehen wir zum Beispiel bei Superkondensatoren“. Das sind elektrochemische Energiespeicher mit sehr hoher Leistungsdichte. Sie können um ein Vielfaches schneller geladen werden als herkömmliche Akkus. Da sie auch viel mehr Ladezyklen überstehen, sind sie heute etwa in der Leistungselektronik verbreitet, zum Beispiel bei der Energierückgewinnung in Bussen und Bahnen. Allerdings speichern sie weit weniger Energie als Akkus gleicher Masse. Neue Elektrodenmaterialien – wie zum Beispiel TUB75 – sollen diesen Abstand verringern.

Das Geheimnis liegt in den Poren

Metallorganische Feststoffe an sich sind schon lange Zeit bekannt. Sie bestehen aus Metallatomen, die direkt mit organischen Molekülen verbunden sind. „Früher wurden diese Kristallstrukturen wegen ihrer ästhetischen Schönheit geschätzt. Einige erinnern tatsächlich an marokkanische Fliesen“, erzählt Yücesan. „Einen praktischen Nutzen hatten metallorganische Festkörper bis vor kurzem aber nicht.“ Das änderte sich zu Beginn des 21. Jahrhunderts als ihre Mikroporosität entdeckt wurde. Das heißt, durch eine sehr hohe Anzahl kleinster Poren besitzen sie eine extrem große Oberfläche.

„In den gut definierten mikroporösen Architekturen, die MOFs bilden können, liegt ihr wichtigster Nutzen“, sagt Yücesan. „Denn die Poren können als Speicherplätze für kleine Moleküle dienen.“ Wasserstoff zum Beispiel; um ihn als Energieträger transport- und lagerfähig zu machen. Kohlendioxid; um das Treibhausgas aus Industrieprozessen abzuscheiden, zu binden und dem Kohlenstoffkreislaus auf diese Weise für sehr lange Zeit zu entziehen. Giftstoffe; um sie zu binden und damit unschädlich zu machen. Oder pharmazeutische Wirkstoffe; die an einen Träger gebunden in den Körper gelangen und dort zielgenau freigesetzt werden können.

Das spannende dabei: Die Materialien werden aus Basischemikalien modular aufgebaut und ihre Porengröße lässt sich für den gewünschten Anwendungszweck optimieren. Materialforscher sprechen in diesem Fall von einem metallorganischen Gerüst (MOF), das sie aus anorganischen Baueinheiten – den IBUs – und strukturlenkenden organischen Verbindungsmolekülen – den Linkern – zusammensetzen. Die organischen Verstrebungen werden über die anorganischen Baueinheiten miteinander verbunden. Damit lassen sich zwei- oder dreidimensionale Strukturen in Nanogröße bilden. „Ich nenne es gerne molekulare Architektur zur Schaffung funktioneller mikroporöser Strukturen“, sagt Yücesan. Die ersten Materialien nach diesem Prinzip wurden in den 1990er Jahren synthetisiert.

Phosphonsäure-MOFs: halbleitend, magnetisch und außergewöhnlich stabil

„Aufgrund der großen Oberflächen können MOFs aber nicht nur kleine Moleküle, sondern auch elektrische Ladungen aufnehmen“, sagt der Chemiker. Das machen zwar auch übliche Materialien wie Aktivkohle oder Grafit. Doch gegenüber diesen haben die Gerüste einen Vorteil: „Während sich die Struktur herkömmlicher Elektrodenmaterialien nur sehr begrenzt weiterentwickeln lässt, bieten uns MOFs eine Plattform mit optimierbaren Oberflächen.“

Allerdings hat die ganze Sache einen Haken. Die bisher geschaffenen MOFs sind allgemein als Isolatoren bekannt. „Das wollten wir ändern und haben uns dafür auf die Phosphonsäuregruppe konzentriert“, sagt Yücesan.

Phosphonsäure ist eine Verbindung aus Phosphor, Wasserstoff und Sauerstoff, die unter normalen Bedingungen weiße Kristalle bildet. „Sie weist einerseits die reichhaltigsten Metallbindungsmodi auf, was die möglichen Kombinationen für neue Materialien erhöht“, erklärt der Chemiker den Grund für seine Auswahl. „Und andererseits sind MOFs, die unter Verwendung von Phosphonsäuren hergestellt werden, bisher kaum bekannt und untersucht.“

Für den Chemiker und sein Team bieten sie deshalb eine strukturell vielseitige Plattform und viel Freiraum für die Entwicklung. „Zurzeit gibt es in der Literatur nur eine sehr begrenzte Anzahl von Phosphonat-MOFs. Viele Eigenschaften sind noch unbekannt. Aber die wenigen bekannten Materialien deuten schon auf eine außergewöhnliche thermische und chemische Stabilität gegenüber herkömmlichen MOFs.“

Den ersten Vertreter der neuen Materialfamilie haben die Forscher nach der Technischen Universität Berlin benannt. „Es war relativ einfach, TUB75 zu kristallisieren, weil wir einen kleinen, strukturell starren organischen Linker verwendet haben“, sagt Yücesan. „Bei komplexeren Molekülen kann es hingegen Jahre dauern, bis das gewünschte MOF synthetisiert und seine Kristallisationsbedingungen optimiert sind.“

Mittlerweile haben er und sein Team nicht nur das Know-how für die Synthese neuer Phosphonsäure-Linker entwickelt, sondern auch ihre Kristallisationsprozesse optimiert. „Trotzdem stehen wir noch ganz am Anfang. Es gibt noch viel Forschungsbedarf. Aber ich glaube, dass die Phosphonat-MOF-Forschung in naher Zukunft eines der am meisten wachsenden Forschungsgebiete sein wird.“

Originalpublikation in Advanced Materials:

Phosphonate Metal–Organic Frameworks: A Novel Family of Semiconductors

DOI: 10.1002/adma.202000474
  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.