Neue Materialien zur Energiespeicherung: ERC Starting Grant für Tristan Petit

Dr. Tristat Petit erhält den ERC Starting Grant des Europäischen Forschungsrats für seine Forschung an einer neue Materialklasse: Die so genannten MXene eignen sich für die Speicherung elektrischer Energie.

Dr. Tristat Petit erhält den ERC Starting Grant des Europäischen Forschungsrats für seine Forschung an einer neue Materialklasse: Die so genannten MXene eignen sich für die Speicherung elektrischer Energie. © HZB/M. Setzpfandt

MXene sind 2D-Materialien, die Flocken aus vielen Schichten bilden (links) und sich als Pseudokondensatoren eignen.

MXene sind 2D-Materialien, die Flocken aus vielen Schichten bilden (links) und sich als Pseudokondensatoren eignen. © HZB/M. Künsting

Dr. Tristan Petit erhält einen Starting Grant des Europäischen Forschungsrats und wird mit 1,5 Millionen Euro in den nächsten fünf Jahren gefördert. Der Materialforscher untersucht damit eine neue Materialklasse für die Speicherung elektrischer Energie, die so genannten MXene. Sie können extrem schnell große Mengen an elektrischer Energie speichern und abgeben. Damit könnten MXene neben Batterien und Superkondensatoren eine wichtige Rolle bei der Energiespeicherung spielen. Der ERC Starting Grant ist eine der wichtigsten europäischen Auszeichnungen.

Eine klimaneutrale Energieversorgung, die auf Solar- und Windenergie setzt, muss mit effizienten Energiespeicherlösungen kombiniert werden. Die Materialklasse der MXene, die erst 2011 entdeckt wurde, besitzt besonders interessante Eigenschaften. MXene könnten sehr schnell große Mengen elektrischer Energie speichern und damit künftig neben klassischen Elektrobatterien (langsam beim Laden und Entladen) und Superkondensatoren (schnell, wenig Energie) eine Rolle bei der Energiespeicherung spielen.

Speicherlösungen für die Energiewende

„Die Eigenschaften der MXene sind nicht nur wissenschaftlich äußerst spannend, sondern versprechen auch einen Beitrag zur Bewältigung der Energiewende. Ich freue mich sehr, dass ich mit dem ERC-Starting Grant die Möglichkeit habe, ihre Funktionsweise zu verstehen und diese Materialien weiterzuentwickeln“, sagt Tristan Petit.

Dabei konzentriert er sich auf MXene, die aus zweidimensionalen Flocken aus Metallkarbid und Nitrid bestehen. Sie lassen sich wie Blätterteig übereinander stapeln. Zwischen den Schichten finden elektrochemische Reaktionen statt. Welche das sind und wie diese Reaktionen genau ablaufen, will Petit nun in seinem geförderten Projekt NANOMXM („Nanoscale Chemical Imaging of MXene Electrochemical Storage by Operando Scanning X-ray Microscopy) herausfinden.

Analysen an BESSY II

„Das weiche Röntgenlicht von BESSY II eignet sich besonders gut dazu, um photo- und elektrochemischen Prozesse in Nanomaterialien zu untersuchen. Wir entwickeln die Messinstrumente und Methoden dafür stetig weiter“, erklärt Petit.

An BESSY II will er die Prozesse an den Grenzflächen zwischen den MXene-Flocken und einem flüssigen Elektrolyten in realitätsnaher Umgebung (in-Situ) und während des Betriebs (in-Operando) analysieren. Neben vielfältigen Methoden der Röntgenspektroskopie wird er insbesondere die Raster-Transmissions-Röntgenmikroskopie (STXM) einsetzen. Dafür wird Petit eine elektrochemische Zelle entwickeln, anhand deren sich die MXene Eigenschaften untersuchen lassen.

„Wir gratulieren Tristan Petit herzlich zu seinem Forschungsvorhaben, das sich hervorragend an BESSY II durchführen lässt und sich perfekt in unsere Energieforschung integriert. Wenn es im Lauf des Projekts gelingt, elektrochemische Reaktionen in den MXenen abzubilden und dieses Verständnis für die Weiterentwicklung der Materialien zu nutzen, ist dies ein großer Fortschritt“, sagt Prof. Dr. Bernd Rech, wissenschaftlicher Geschäftsführer des HZB.

Zur Person

Tristan Petit studierte unter anderem an der ETH Zürich und promovierte an der Ecole Normale Supérieure de Cachan in der Nähe von Paris. Nach Forschungsaufenthalten an der ETH Zürich und der CEA kam er 2013 mit einer Humboldt-Fellowship an das HZB. 2015 erhielt er eine Freigeist-Förderung der Volkswagen-Stiftung und baute eine eigene Nachwuchsforschergruppe zu kohlenstoffbasierten Nanomaterialien am HZB auf. Gemeinsam mit seinem Team entwickelte er die Idee für das EU-Projekt NANOMXM und führte auch erste Experimente zu MXenen durch.

Weitere Informationen:

Dieses Projekt wird durch den European Research Council (ERC) im Rahmen des Horizont 2020 Programms gefördert (No 947852).

Resultate aus der Gruppe Petit zu MXenen: Schnell und stark: Neue 2D-Materialien mit Talent zur Energiespeicherung"

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.