HZB & IKZ bündeln ihre Kompetenzen bei kristallinen Energie- und Quantenmaterialien

Die Teilnehmer nach der Unterzeichnung des Kooperationsvertrags zwischen IKZ und HZB in Corona-konformen Abstand: (von links nach rechts) Dr. Andreas Popp (IKZ), Dr. Manuela Urban (FVB), Dr. Peter Gaal (IKZ), Prof. Dr. Catherine Dubourdieu (HZB), Prof. Dr. Thomas Schröder (IKZ), Prof. Dr. Bernd Rech (HZB), Thomas Frederking (HZB).

Die Teilnehmer nach der Unterzeichnung des Kooperationsvertrags zwischen IKZ und HZB in Corona-konformen Abstand: (von links nach rechts) Dr. Andreas Popp (IKZ), Dr. Manuela Urban (FVB), Dr. Peter Gaal (IKZ), Prof. Dr. Catherine Dubourdieu (HZB), Prof. Dr. Thomas Schröder (IKZ), Prof. Dr. Bernd Rech (HZB), Thomas Frederking (HZB). © Sandra Fischer/HZB

Am 11. September 2020 unterzeichneten das Helmholtz-Zentrum Berlin (HZB) und das Leibniz-Institut für Kristallzüchtung (IKZ) ein Kooperationsabkommen, um die gemeinsame Forschung an Energie- und Quantenmaterialien voran zu bringen. Im Rahmen der Kooperation werden auch neuartige Röntgenoptiken für Synchrotronstrahlungsquellen entwickelt.

Das IKZ arbeitet seit vielen Jahren eng mit dem HZB zusammen: Einerseits nutzen IKZ-WissenschaftlerInnen die Strahlungsquelle BESSY II des HZB für ihre materialwissenschaftlichen Untersuchungen, andererseits entwickeln und fertigen die KristallzüchterInnen des IKZ Komponenten, welche die besonderen Eigenschaften von BESSY II zur Geltung bringen.

„Wir freuen uns sehr, dass wir mit dem Kooperationsvertrag unsere enge Zusammenarbeit noch verstärken können“, sagt Prof. Dr. Bernd Rech, wissenschaftlicher Geschäftsführer am HZB. „An BESSY II bieten wir eine Vielfalt an röntgenanalytischen Methoden für die Analyse komplexer Materialsysteme. Im Rahmen unserer Kooperation können wir unsere sich ergänzenden Kompetenzen gezielt einsetzen, um gemeinsam Forschungsgebiete in der Energieforschung und den Quantentechnologien zu erschließen.“

Auch Prof. Thomas Schröder, wissenschaftlicher Direktor am IKZ betont die Chancen der Zusammenarbeit beider Forschungseinrichtungen. "Das IKZ ist sehr daran interessiert, mit dem HZB gemeinsame F&E-Projekte zu Materialien für die Photovoltaik und Leistungselektronik zu initiieren. Darüber hinaus evaluieren wir Möglichkeiten, unser gemeinsames Potential im Hinblick auf Zukunftsthemen wie z.B. die Quantentechnologie zu bündeln, um eine möglichst große Wirkung in diesem Forschungsgebiet zu entfalten.“ Da Prof. Schröder selbst einen Teil seiner Karriere in der Synchrotron-Forschung absolviert hat, gibt es auch einen engen persönlichen Bezug zur Material- und Methodenentwicklung für die Großgeräteforschung. „Heute freue ich mich, dass das IKZ neue F&E-Projekte mit BESSY II beginnen kann, um mit unseren kristallinen Materialien die Synchrotronquellen z.B. durch aktive und passive Röntgenoptiken zu unterstützen.“

Kurzinfo zum IKZ:

Das IKZ in Berlin-Adlershof ist ein internationales Kompetenz-Zentrum für Wissenschaft, Technologie, Service und Transfer im Bereich kristalliner Materialien. Das Forschungs- und Entwicklungs-Spektrum reicht dabei von Themen der Grundlagen- und Anwendungs-Forschung bis hin zu vorindustriellen Forschungsaufgaben. Das IKZ erarbeitet Innovationen in kristallinen Materialien durch seine Expertise in Anlagenbau, numerischer Simulation und Kristallzüchtung zur Erzielung kristalliner Materialien höchster Qualität und mit maßgeschneiderten Eigenschaften. Das Alleinstellungsmerkmal des Instituts ist die Forschung an Volumenkristallen. Diese Arbeiten werden begleitet durch Forschung und Entwicklung an Nanostrukturen und dünnen Filmen und eine starke theoretische und experimentelle Materialforschung.

IKZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.