Perowskit-Materialien: Neutronen zeigen Zwillingsbildung in Halid-Perowskiten

Dr. Michael Tovar am FALCON-Instrument der BER II Neutronenquelle.

Dr. Michael Tovar am FALCON-Instrument der BER II Neutronenquelle. © HZB

Mit der Laue-Kamera wurde das Beugungsmuster aufgenommen.

Mit der Laue-Kamera wurde das Beugungsmuster aufgenommen. © HZB

Solarzellen auf Basis von hybriden Halid-Perowskiten erreichen hohe Wirkungsgrade. Diese gemischt organisch-anorganischen Halbleiter werden in der Regel als dünne Filme aus Mikrokristallen produziert. Eine Untersuchung mit der Laue-Kamera an der Neutronenquelle BER II konnte nun aufklären, dass es beim Auskristallisieren auch bei Raumtemperatur zur Zwillingsbildung kommt. Dieser Einblick ist hilfreich, um Herstellungsverfahren von Halid-Perowskiten zu optimieren. 

Vor gut zehn Jahren entdeckten Forscherteams die Klasse der halborganischen Halid-Perowskite, die nun als neue Materialien für Solarzellen eine rasante Karriere machen. Die gemischt organisch-anorganischen Halbleiter erreichten innerhalb weniger Jahre Wirkungsgrade von über 25 Prozent.

Ihren Namen haben sie von ihrer Grundstruktur, die der des Minerals Perowskit (CaTiO3) sehr ähnlich ist, aber andere Bausteine enthält: Halid Anionen, Blei Kationen und organische molekulare Kationen.

MAPI-Struktur: offene Fragen

Im Falle der wichtigsten Verbindung der Klasse, Methylammoniumbleiiodid CH3NH3PbI3 (meist abgekürzt als MAPI), die auch hier untersucht wurde, handelt es sich bei den molekularen Kationen um Methylammonium-Kationen und bei den Anionen um Iodid-Anionen. Obwohl allein 2019 mehr als 4000 Publikationen zu Halid Perowskiten erschienen sind, ist es bislang nicht gelungen, ihre Struktur restlos zu verstehen. Man dachte, dass dies  im Falle von MAPI unter anderem daran liegt, dass sie als polykristalline Filme bei erhöhter Temperatur hergestellt werden und es beim Abkühlen auf Raumtemperatur zu Zwillingsbildung kommt.

Aufklärung mit Neutronen

Die Zwillingsbildung ist komplex und kann die Materialeigenschaften deutlich verändern. Daher ist es spannend, diesen Prozess näher zu untersuchen. „Wir haben nun MAPI bei Raumtemperatur auskristallisiert und mit der Laue-Kamera Falcon am BER II die so entstandenen Kristalle analysiert“, sagt Dr. Joachim Breternitz, HZB.

Zusammen mit seinen Kollegen Prof. Susan Schorr und Dr. Michael Tovar konnte er aus den Daten ermitteln, dass auch bei Raumtemperatur gezüchtete Kristalle Zwillinge bilden. Das gibt einen neuen Einblick in den Kristallisations- und Wachstumsprozess von MAPI. „Unsere Ergebnisse deuten darauf hin, dass die Kristallisationskeime eine höhere Symmetrie aufweisen, als die die fertigen Kristalle, die als Bulk bezeichnet werden“, erläutert Breternitz.

Mit diesen Einblicken kann die Synthese der technologisch wichtigen Dünnschichten gezielt optimiert werden.

Die Neutronenquelle BER II hat bis zu ihrer planmäßigen Abschaltung im Dezember 2019 Neutronen für die Forschung bereitgestellt. „Das war eines unserer letzten Experimente an FALCON am BER II und ich hoffe, dass wir damit bis zum Schluss nützliche Beiträge leisten konnten“, sagt Breternitz.

arö


Das könnte Sie auch interessieren

  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.
  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.