Perowskit-Materialien: Neutronen zeigen Zwillingsbildung in Halid-Perowskiten

Dr. Michael Tovar am FALCON-Instrument der BER II Neutronenquelle.

Dr. Michael Tovar am FALCON-Instrument der BER II Neutronenquelle. © HZB

Mit der Laue-Kamera wurde das Beugungsmuster aufgenommen.

Mit der Laue-Kamera wurde das Beugungsmuster aufgenommen. © HZB

Solarzellen auf Basis von hybriden Halid-Perowskiten erreichen hohe Wirkungsgrade. Diese gemischt organisch-anorganischen Halbleiter werden in der Regel als dünne Filme aus Mikrokristallen produziert. Eine Untersuchung mit der Laue-Kamera an der Neutronenquelle BER II konnte nun aufklären, dass es beim Auskristallisieren auch bei Raumtemperatur zur Zwillingsbildung kommt. Dieser Einblick ist hilfreich, um Herstellungsverfahren von Halid-Perowskiten zu optimieren. 

Vor gut zehn Jahren entdeckten Forscherteams die Klasse der halborganischen Halid-Perowskite, die nun als neue Materialien für Solarzellen eine rasante Karriere machen. Die gemischt organisch-anorganischen Halbleiter erreichten innerhalb weniger Jahre Wirkungsgrade von über 25 Prozent.

Ihren Namen haben sie von ihrer Grundstruktur, die der des Minerals Perowskit (CaTiO3) sehr ähnlich ist, aber andere Bausteine enthält: Halid Anionen, Blei Kationen und organische molekulare Kationen.

MAPI-Struktur: offene Fragen

Im Falle der wichtigsten Verbindung der Klasse, Methylammoniumbleiiodid CH3NH3PbI3 (meist abgekürzt als MAPI), die auch hier untersucht wurde, handelt es sich bei den molekularen Kationen um Methylammonium-Kationen und bei den Anionen um Iodid-Anionen. Obwohl allein 2019 mehr als 4000 Publikationen zu Halid Perowskiten erschienen sind, ist es bislang nicht gelungen, ihre Struktur restlos zu verstehen. Man dachte, dass dies  im Falle von MAPI unter anderem daran liegt, dass sie als polykristalline Filme bei erhöhter Temperatur hergestellt werden und es beim Abkühlen auf Raumtemperatur zu Zwillingsbildung kommt.

Aufklärung mit Neutronen

Die Zwillingsbildung ist komplex und kann die Materialeigenschaften deutlich verändern. Daher ist es spannend, diesen Prozess näher zu untersuchen. „Wir haben nun MAPI bei Raumtemperatur auskristallisiert und mit der Laue-Kamera Falcon am BER II die so entstandenen Kristalle analysiert“, sagt Dr. Joachim Breternitz, HZB.

Zusammen mit seinen Kollegen Prof. Susan Schorr und Dr. Michael Tovar konnte er aus den Daten ermitteln, dass auch bei Raumtemperatur gezüchtete Kristalle Zwillinge bilden. Das gibt einen neuen Einblick in den Kristallisations- und Wachstumsprozess von MAPI. „Unsere Ergebnisse deuten darauf hin, dass die Kristallisationskeime eine höhere Symmetrie aufweisen, als die die fertigen Kristalle, die als Bulk bezeichnet werden“, erläutert Breternitz.

Mit diesen Einblicken kann die Synthese der technologisch wichtigen Dünnschichten gezielt optimiert werden.

Die Neutronenquelle BER II hat bis zu ihrer planmäßigen Abschaltung im Dezember 2019 Neutronen für die Forschung bereitgestellt. „Das war eines unserer letzten Experimente an FALCON am BER II und ich hoffe, dass wir damit bis zum Schluss nützliche Beiträge leisten konnten“, sagt Breternitz.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Nachricht
    04.09.2024
    SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.
  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.