Perovskite materials: Neutrons show twinning in halide perovskites

Dr. Michael Tovar working at FALCON at the neutron Source BER II.

Dr. Michael Tovar working at FALCON at the neutron Source BER II. © HZB

The Laue camera captured the diffraction pattern.

The Laue camera captured the diffraction pattern. © HZB

Solar cells based on hybrid halide perovskites achieve high efficiencies. These mixed organic-inorganic semiconductors are usually produced as thin films of microcrystals. An investigation with the Laue camera at the neutron source BER II could now clarify that twinning occurs during crystallisation even at room temperature. This insight is helpful for optimising production processes of halide perovskites. 

A good ten years ago, research teams discovered the class of semi-organic halide perovskites, which are now making a rapid career as new materials for solar cells. The mixed organic-inorganic semiconductors achieved efficiencies of over 25 percent within a few years. They take their name from their basic structure, which is very similar to that of the mineral perovskite (CaTiO3), but contains other components: halide anions, lead cations and organic molecular cations.

MAPI examined

In the case of the most important compound of the class, methylammonium lead iodide CH3NH3PbI3 (usually abbreviated as MAPI), which was also studied here, the molecular cations are methylammonium cations and the anions are iodide anions. Although more than 4000 publications on halide perovskites have appeared in 2019 alone, it has not yet been possible to fully understand their structure. In the case of MAPI this was attributed, among other things, to the fact that they are produced as polycrystalline films at elevated temperature and it was assumed that twinning occurs when they are cooled to room temperature.

Close examination with neutrons

The formation of twins is complex and can significantly change the material properties. It is therefore exciting to investigate this process more closely. "We have now crystallised MAPI at room temperature and analysed the crystals thus formed with the Laue camera Falcon on BER II," says Dr. Joachim Breternitz, HZB. Together with his colleagues Prof. Susan Schorr and Dr. Michael Tovar, he was able to determine from the data that crystals grown at room temperature also form twins. This gives a new insight into the crystallization and growth process of MAPI. "Our results indicate that the crystallisation nuclei have a higher symmetry than the bulk crystals," explains Breternitz.

With these insights, the synthesis of the technologically important thin films can be specifically optimised.

The neutron source BER II has provided neutrons for research until its scheduled shutdown in December 2019. "This was one of our last experiments at FALCON on BER II and I hope that we were able to make useful contributions right up to the end," says Breternitz.

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.