Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen

Ultrakalte Atome in einem optischen Gitter zählen zu den betrachteten Quantensystemen.

Ultrakalte Atome in einem optischen Gitter zählen zu den betrachteten Quantensystemen. © arö/HZB

Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und zwar mithilfe von komplexen Festkörpersystemen, die experimentell untersucht werden können. Die Studie wurde in der renommierten Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht.

„Das eigentliche Ziel ist ein robuster Quantencomputer, der auch bei Fehlern stabile Ergebnisse erzeugt und diese Fehler korrigiert“, erklärt Jens Eisert, Professor an der Freien Universität Berlin und Leiter einer gemeinsamen Forschungsgruppe am HZB. Bislang ist die Entwicklung robuster Quantencomputer noch in weiter Ferne, denn Quantenbits reagieren extrem empfindlich auf kleinste Schwankungen der Umgebungsparameter. Doch nun könnte ein neuer Ansatz Erfolg versprechen:

Reale Systeme nutzen

Eine Postdoktorandin und ein Postdoktorand aus der Gruppe um Jens Eisert, Maria Laura Baez und Marek Gluza, haben eine Idee von Richard Feynman aufgegriffen, einem genialen US-amerikanischen Physiker der Nachkriegszeit. Feynman hatte vorgeschlagen, reale Systeme aus Atomen mit ihren quantenphysikalischen Eigenschaften für die Simulation anderer Quantensysteme heranzuziehen. Diese Quantensysteme können aus perlenkettenartig aufgereihten Atomen mit besonderen Spin-Eigenschaften bestehen, geeignet aber wären aber auch Ionenfallen, Rydbergatome, supraleitende Qbits oder Atome in optischen Gittern. Gemeinsam ist ihnen, dass man sie im Labor erzeugen und auch kontrollieren kann. Ihre quantenphysikalischen Eigenschaften könnten dazu herangezogen werden, um das Verhalten anderer Quantensysteme vorherzusagen. Doch welche Quantensysteme wären gute Kandidaten? Gibt es eine Möglichkeit, dies vorab herauszufinden?

Strukturfaktor als Werkzeug

Das Team um Eisert hat diese Frage nun mit einer Kombination aus mathematischen und numerischen Methoden untersucht. Tatsächlich zeigte die Gruppe, dass der sogenannte dynamische Strukturfaktor solcher Systeme ein mögliches Werkzeug ist, um Aussagen über andere Quantensysteme zu treffen. Dieser Faktor bildet indirekt ab, wie sich Spins oder andere Quantengrößen mit der Zeit verhalten, er wird durch eine Fouriertransformation errechnet.

Brücke zwischen Festkörperphysik und Quanteninformatik

„Diese Arbeit schlägt eine Brücke zwischen zwei Welten“, erklärt Jens Eisert. „Da ist zum einen die Gemeinschaft der Kondensierten Materie, die Quantensysteme untersucht und die daraus neue Erkenntnisse gewinnt – und zum anderen die Quanteninformatik – die sich mit Quanteninformation befasst. Wir glauben, dass große Fortschritte möglich werden, wenn wir die beiden Welten zusammenbringen“, sagt der Wissenschaftler.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.