Perowskit-Solarzellen: Auf dem Weg zum gezielten Design von Tinten für die industrielle Fertigung

Schematische Darstellung: Aus der Tinte bildet sich über Zwischenphasen eine polykristalline Perowskit-Dünnschicht.

Schematische Darstellung: Aus der Tinte bildet sich über Zwischenphasen eine polykristalline Perowskit-Dünnschicht. © HZB

Für die Herstellung von hochwertigen Perowskit-Dünnfilmen für großflächige Photovoltaikmodule werden oft optimierte „Tinten“ verwendet, die eine Mischung von Lösungsmitteln enthalten. Ein HZB-Team hat nun an BESSY II analysiert, wie die Kristallisationsprozesse in solchen Mischungen ablaufen. Mit einem neu entwickelten Modell ist es zudem nun möglich, die Kinetik der Kristallisationsprozesse für verschiedene Lösungsmittelgemische vorab zu bewerten. Dies ist hilfreich für die Produktion von Perowskit-Modulen im industriellen Maßstab.

Hybride organische Perowskit-Halbleiter ermöglichen Solarzellen mit hohen Wirkungsgraden bei niedrigen Kosten. Sie können aus Vorläuferlösungen hergestellt werden, die nach dem Auftragen auf ein Substrat einen polykristallinen Dünnfilm bilden. Einfache Herstellungsverfahren wie das Aufschleudern einer Vorläuferlösung führen oft nur im Labormaßstab, d.h. bei sehr kleinen Proben, zu guten Ergebnissen.

Perowskit-Schichten aus dem Tintendrucker

Für die Herstellung großflächiger Photovoltaikmodule entwickelt das Team von Dr. Eva Unger daher Druck- und Beschichtungsverfahren: Sie verwenden dabei „Tinten“ aus den in Lösungsmitteln gelösten Vorläufersubstanzen.  Die Zusammensetzung der Tinte ist entscheidend für die Qualität der späteren Dünnschicht: Die Lösungsmittel beeinflussen durch ihre Eigenschaften den Prozess der Kristallisation. „Unsere Forschungsfrage lautete: Wie können wir Unterschiede in der Kristallisationskinetik bei der Verwendung verschiedener Lösungsmittel vorab wissensbasiert abschätzen?" erklärt Unger, die am HZB die Nachwuchsgruppe Hybridmaterialbildung und Skalierung leitet.

Unterschiedliche Verdampfungsraten

In Lösungsmitteln mit nur einer Komponente wird der Kristallisationsprozess durch die Verdampfungsrate bestimmt. „Bei Mischungen aus verschiedenen Lösungsmitteln wird die Verdampfung von der flüchtigsten Komponente dominiert, die am schnellsten verdampft. Dadurch ändert sich das Verhältnis der Lösungsmittel, die bei der Kristallisation vorhanden sind", sagt Dr. Oleksandra Shargaieva, Postdoc in Ungers Team.  Am KMC-2-Strahlrohr von BESSY II konnte sie die Zwischenphasen während der Bildung der Perowskit-Dünnschicht analysieren. „Dabei spielen sowohl die Verdampfungsraten der Lösungsmittel als auch die Bindungsstärken an das Bleihalogenid eine Rolle“, sagt Shargaieva.

Wissensbasierte Optimierung

„Diese Erkenntnisse sind hilfreich, um die Kinetik der Kristallisationsprozesse des Perowskit-Dünnfilms für verschiedene Lösungsmittelkombinationen zu berechnen", sagt Shargaieva. Und Unger ergänzt: Beim Aufskalieren vom Labormaßstab mangelt es noch an systematischem Wissen. Mit diesen Ergebnissen ebnen wir den Weg für das wissensbasierte Design von Tinten, um die Herstellung von Perowskit-Dünnschichten im industriellen Maßstab oder von Perowskit-Dünnschichten hoher Qualität zu ermöglichen.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.