Perowskit-Solarzellen: Auf dem Weg zum gezielten Design von Tinten für die industrielle Fertigung

Schematische Darstellung: Aus der Tinte bildet sich über Zwischenphasen eine polykristalline Perowskit-Dünnschicht.

Schematische Darstellung: Aus der Tinte bildet sich über Zwischenphasen eine polykristalline Perowskit-Dünnschicht. © HZB

Für die Herstellung von hochwertigen Perowskit-Dünnfilmen für großflächige Photovoltaikmodule werden oft optimierte „Tinten“ verwendet, die eine Mischung von Lösungsmitteln enthalten. Ein HZB-Team hat nun an BESSY II analysiert, wie die Kristallisationsprozesse in solchen Mischungen ablaufen. Mit einem neu entwickelten Modell ist es zudem nun möglich, die Kinetik der Kristallisationsprozesse für verschiedene Lösungsmittelgemische vorab zu bewerten. Dies ist hilfreich für die Produktion von Perowskit-Modulen im industriellen Maßstab.

Hybride organische Perowskit-Halbleiter ermöglichen Solarzellen mit hohen Wirkungsgraden bei niedrigen Kosten. Sie können aus Vorläuferlösungen hergestellt werden, die nach dem Auftragen auf ein Substrat einen polykristallinen Dünnfilm bilden. Einfache Herstellungsverfahren wie das Aufschleudern einer Vorläuferlösung führen oft nur im Labormaßstab, d.h. bei sehr kleinen Proben, zu guten Ergebnissen.

Perowskit-Schichten aus dem Tintendrucker

Für die Herstellung großflächiger Photovoltaikmodule entwickelt das Team von Dr. Eva Unger daher Druck- und Beschichtungsverfahren: Sie verwenden dabei „Tinten“ aus den in Lösungsmitteln gelösten Vorläufersubstanzen.  Die Zusammensetzung der Tinte ist entscheidend für die Qualität der späteren Dünnschicht: Die Lösungsmittel beeinflussen durch ihre Eigenschaften den Prozess der Kristallisation. „Unsere Forschungsfrage lautete: Wie können wir Unterschiede in der Kristallisationskinetik bei der Verwendung verschiedener Lösungsmittel vorab wissensbasiert abschätzen?" erklärt Unger, die am HZB die Nachwuchsgruppe Hybridmaterialbildung und Skalierung leitet.

Unterschiedliche Verdampfungsraten

In Lösungsmitteln mit nur einer Komponente wird der Kristallisationsprozess durch die Verdampfungsrate bestimmt. „Bei Mischungen aus verschiedenen Lösungsmitteln wird die Verdampfung von der flüchtigsten Komponente dominiert, die am schnellsten verdampft. Dadurch ändert sich das Verhältnis der Lösungsmittel, die bei der Kristallisation vorhanden sind", sagt Dr. Oleksandra Shargaieva, Postdoc in Ungers Team.  Am KMC-2-Strahlrohr von BESSY II konnte sie die Zwischenphasen während der Bildung der Perowskit-Dünnschicht analysieren. „Dabei spielen sowohl die Verdampfungsraten der Lösungsmittel als auch die Bindungsstärken an das Bleihalogenid eine Rolle“, sagt Shargaieva.

Wissensbasierte Optimierung

„Diese Erkenntnisse sind hilfreich, um die Kinetik der Kristallisationsprozesse des Perowskit-Dünnfilms für verschiedene Lösungsmittelkombinationen zu berechnen", sagt Shargaieva. Und Unger ergänzt: Beim Aufskalieren vom Labormaßstab mangelt es noch an systematischem Wissen. Mit diesen Ergebnissen ebnen wir den Weg für das wissensbasierte Design von Tinten, um die Herstellung von Perowskit-Dünnschichten im industriellen Maßstab oder von Perowskit-Dünnschichten hoher Qualität zu ermöglichen.“

arö

Das könnte Sie auch interessieren

  • Europäische Pilotlinie für innovative Tandem-Solarzellen
    Nachricht
    23.11.2022
    Europäische Pilotlinie für innovative Tandem-Solarzellen
    PEPPERONI ist ein vierjähriges Forschungs- und Innovationsprojekt, das im Rahmen von Horizon Europe kofinanziert und gemeinsam vom Helmholtz-Zentrum Berlin und Qcells koordiniert wird. Das Projekt wird dazu beitragen, die Markteinführung und Massenproduktion von Perowskit/Silizium-Tandem-Photovoltaik-Technologien voranzubringen.

  • Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Science Highlight
    22.11.2022
    Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.
  • Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Science Highlight
    17.11.2022
    Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Photoelektroden auf der Basis von BiVO4 gelten als Top-Kandidaten für die solare Wasserstofferzeugung. Doch was passiert eigentlich, wenn sie mit Wassermolekülen in Kontakt kommen? Eine Studie im Journal of the American Chemical Society hat diese entscheidende Frage nun teilweise beantwortet: Überschüssige Elektronen aus dotierten Fremdelementen oder Defekten fördern die Dissoziation von Wasser, was wiederum sogenannte Polaronen an der Oberfläche stabilisiert. Dies zeigen Daten aus Experimenten eines HZB-Teams an der Advanced Light Source des Lawrence Berkeley National Laboratory. Die Ergebnisse könnten dazu beitragen, bessere Photoanoden für die grüne Wasserstoffproduktion zu entwickeln.