HZB and Humboldt University agree to set up a catalysis laboratory

Part of the IRIS research labs will be equipped for research on catalysts. Photo

Part of the IRIS research labs will be equipped for research on catalysts. Photo © Jan Zappner

With approx. 4,500 square metres of laboratory, office and communication space, the IRIS research building offers optimal conditions for the research and development of complex material systems.

With approx. 4,500 square metres of laboratory, office and communication space, the IRIS research building offers optimal conditions for the research and development of complex material systems. © IRIS Adlershof

Helmholtz-Zentrum Berlin (HZB) and Humboldt-Universität zu Berlin (HU) have signed a cooperation agreement with the aim of establishing a joint research laboratory for catalysis in the IRIS research building of HU in Adlershof. The IRIS research building offers optimal conditions for the research and development of complex material systems.

Catalysts are the key to many technologies and processes needed to build a climate-neutral economy. A hotspot for catalysis research has been developing in Berlin's research landscape for some time. As part of the Excellence Initiative, new clusters such as UniSysCat have been created in which established research institutes bundle their activities and the chemical industry is involved through the BASCat laboratory. An important field of research is the production of "green" hydrogen: in order to produce hydrogen and synthetic fuels in a climate-neutral way using renewable energies, innovative catalysts are needed. The recently launched CatLab project, which is funded as part of the Hydrogen Strategy, is pursuing completely new approaches based on thin-film technologies that promise real leaps in innovation.

IRIS laboratories equipped for catalysis research

To further promote catalysis research in Berlin, Humboldt-Universität zu Berlin and HZB have now signed another cooperation agreement. Part of the IRIS laboratories in Berlin-Adlershof will be additionally equipped for the development and investigation of heterogeneous catalyst systems. IRIS Adlershof stands for Integrative Research Institute for the Sciences. With approximately 4,500 square metres of state-of-the-art laboratory, office and communication space, the IRIS research building offers optimal conditions for the research and development of complex material systems. Close cooperation is also planned in the field of thin-film technology, using additive manufacturing processes and nanostructuring and synthesis methods.

Innovations through interdisciplinary cooperation

In the IRIS research building, experts from different disciplines work closely together for a deep physical-chemical understanding of complex interfaces. This forms an excellent basis for the development of energy materials. The arrangement of the laboratories and offices as well as the spacious communication areas create the best conditions for the different disciplines to exchange ideas and learn from each other.

Cooperation agreement is also legally innovative

The cooperation between the HU and the HZB on the catalysis research laboratory is being structured on a public-law basis for the first time due to the recent amendment to the Berlin Higher Education Act on cooperation between scientific institutions. The procedure for recording, evaluating and documenting mutual cooperation contributions is simpler and less bureaucratic. This allows researchers to concentrate on their core task – doing science.

red.

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.