Solarer Wasserstoff: Photoanoden aus α-SnWO4 versprechen hohe Wirkungsgrade

TEM-Aufnahme einer &alpha;-SnWO<sub>4 </sub>D&uuml;nnschicht (pink), die mit 20 nm NiO<sub>x</sub> (gr&uuml;n) beschichtet wurde. An der Grenzfl&auml;che bildet sich eine weitere extrem d&uuml;nne Schicht.

TEM-Aufnahme einer α-SnWO4 Dünnschicht (pink), die mit 20 nm NiOx (grün) beschichtet wurde. An der Grenzfläche bildet sich eine weitere extrem dünne Schicht. © HZB

Photoanoden aus Metalloxiden gelten als praktikable Lösung für die Erzeugung von Wasserstoff mit Sonnenlicht. So besitzt α-SnWO4 optimale elektronische Eigenschaften für die photoelektrochemische Wasserspaltung, korrodiert jedoch rasch. Schutzschichten aus Nickeloxid können die Korrosion verhindern, reduzieren jedoch die Photospannung und damit den Wirkungsgrad. Nun hat ein Team am HZB an der Synchrotronquelle BESSY II untersucht, was an der Grenzfläche zwischen der Photoanode und der Schutzschicht genau passiert. Kombiniert mit theoretischen Methoden deuten die Messdaten darauf hin, dass sich dort eine Oxidschicht bildet, die den Wirkungsgrad der Photoanode beeinträchtigt.

Wasserstoff ist ein wichtiger Faktor in einem nachhaltigen Energiesystem. Das Gas speichert Energie in chemischer Form und kann auf vielfältige Weise genutzt werden: als Kraftstoff, als Ausgangsstoff für andere Brennstoffe und Chemikalien oder auch zur Stromerzeugung in Brennstoffzellen. Wasserstoff lässt sich klimaneutral  durch die elektrochemische Spaltung von Wasser mit Sonnenlicht erzeugen. Die nötige Photospannung und Photostrom liefern geeignete Photoelektroden unter Lichteinfall, die im Wasser stabil bleiben. Einige Metalloxidverbindungen erfüllen diese Vorraussetzungen. So erreichen solare Wasserspalter mit Wismut-Vanadat (BiVO4)-Photoelektroden bereits heute Wirkungsgrade (Solar-to-Hydrogen) von etwa 8 % , was nahe am theoretischen Maximum des Materials liegt (9 %). Um Wirkungsgrade jenseits der 9 % zu erreichen, werden neue Materialien mit einer kleineren Bandlücke benötigt.

α-SnWO4 : Theoretisch bis 20 % Wirkungsgrad möglich

Das Metalloxid α-SnWO4 hat eine Bandlücke von 1,9 eV, die sich perfekt für die photoelektrochemische Wasserspaltung eignet. Theoretisch könnte eine Photoanode aus diesem Material um die 20 % des eingestrahlten Sonnenlichts in chemische Energie, gespeichert in Form von Wasserstoff, umwandeln. Leider zersetzt sich die Verbindung in wässriger Umgebung sehr schnell.

Schutzschicht reduziert die Photospannung

Dünne Schichten aus Nickeloxid (NiOx) können die α-SnWO4-Photoanode vor Korrosion schützen. Dabei wurde jedoch auch festgestellt, dass sie die Photospannung deutlich reduzieren. Um zu verstehen, warum dies der Fall ist, hat ein Team um Dr. Fatwa Abdi am HZB-Institut für Solare Brennstoffe die α-SnWO4/NiOx-Grenzfläche an BESSY II im Detail analysiert.

HAXPES-Messung an BESSY II

"Wir haben Proben mit unterschiedlichen NiOx-Dicken mit harter Röntgen-Photoelektronenspektroskopie (HAXPES) an BESSY II untersucht und die Messdaten mit Ergebnissen aus Berechnungen und Simulationen interpretiert", sagt Patrick Schnell, Erstautor der Studie und Doktorand in der HI-SCORE International Research School am HZB. "Diese Ergebnisse deuten darauf hin, dass sich an der Grenzfläche eine dünne Oxidschicht bildet, die die Photospannung reduziert", erklärt Dr. Fatwa Abdi.

Ausblick: Schutzschicht ohne Nachteile

Insgesamt liefert die Studie grundlegende neue Erkenntnisse über die komplexe Natur von Grenzflächen in Metalloxid-basierten Photoelektroden. "Diese Einblicke sind sehr hilfreich für die Entwicklung kostengünstiger, skalierbarer Metalloxid-Photoelektroden", sagt Abdi. α-SnWO4 ist in dieser Hinsicht besonders vielversprechend. "Wir arbeiten derzeit an einem alternativen Abscheidungsprozess für NiOx auf α-SnWO4, der nicht zur Bildung einer Grenzflächenoxidschicht führt. Wenn dies gelingt, erwarten wir, dass sich die photoelektrochemische Leistung von α-SnWO4 deutlich erhöhen wird."

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.