Wie Quantenpunkte miteinander „sprechen“ können

Die Illustration zeigt zwei Quantenpunkte, die über Lichtpulse miteinander kommunizieren.

Die Illustration zeigt zwei Quantenpunkte, die über Lichtpulse miteinander kommunizieren. © HZB

Wie sich die Kommunikation zwischen zwei Quantenpunkten mit Licht beeinflussen lässt, hat nun eine Gruppe am HZB theoretisch ausgearbeitet.  Dabei zeigt das Team um Annika Bande auch Wege, um den Informations- bzw. Energieübertrag von einem Quantenpunkt zum anderen zu kontrollieren und zu speichern. Zu diesem Zweck berechneten die Forschenden die Elektronenstruktur von jeweils zwei so genannten Nanokristallen, die als Quantenpunkte fungieren. Mit den Ergebnissen lässt sich die Bewegung von Elektronen in Quantenpunkten in Echtzeit simulieren.

Sogenannte Quantenpunkte sind eine neue Materialklasse mit vielen Anwendungsmöglichkeiten. Um Quantenpunkte zu realisieren, nutzt man winzige Halbleiterkristalle mit Abmessungen im Nanometerbereich. Über die Größe dieser Kristalle lassen sich die optischen und elektrischen Eigenschaften kontrollieren. Als QLEDs sind sie bereits in den neuesten Generationen von Flachbildschirmen auf dem Markt, wo sie für eine besonders brillante und hochaufgelöste Farbwiedergabe sorgen. Doch nicht nur als „Farbstoffe“ werden Quantenpunkte genutzt, sondern sie auch in Solarzellen oder als Halbleiterbauelemente, bis hin zu Rechenbausteinen, den Qubits, in einem Quantencomputer.

Nun hat ein Team um Dr. Annika Bande am HZB mit einer theoretischen Arbeit das Verständnis der Wechselwirkung zwischen mehreren Quantenpunkten mit einer atomistischen Betrachtung erweitert.

Annika Bande leitet am HZB die Gruppe „Theorie der Elektronendynamik und Spektroskopie“ und interessiert sich besonders für die Ursprünge von quantenphysikalischen Phänomenen. Auch wenn es sich bei Quantenpunkten um extrem winzige Nanokristalle handelt, bestehen diese doch aus tausenden von Atomen mit wiederum einem Vielfachen von Elektronen. Selbst mit Supercomputern ließe sich die elektronische Struktur eines solchen Halbleiterkristalls kaum berechnen, betont die theoretische Chemikerin, die erst vor kurzem an der Freien Universität ihre Habilitation abgeschlossen hat. „Wir entwickeln aber Methoden, um das Problem näherungsweise zu beschreiben“, erklärt Bande. „In diesem Fall haben wir im Computer mit verkleinerten Quantenpunktversionen aus nur etwa hundert Atomen gearbeitet, die aber trotzdem die wesentlichen Eigenschaften realer Nanokristalle besitzen."

Mit diesem Ansatz ist es uns nach anderthalb Jahren Entwicklung und in Zusammenarbeit mit Prof. Jean Christophe Tremblay von der CNRS-Université de Lorraine in Metz gelungen, zwei Quantenpunkte aus jeweils hunderten Atomen miteinander Energie austauschen zu lassen. Konkret haben wir untersucht, wie diese zwei Quantenpunkte kontrolliert die Energie des Lichts aufnehmen, austauschen und dauerhaft speichern können.  Dabei dient ein erster Lichtpuls zur Anregung, während der zweite Lichtpuls die Abspeicherung bewirkt.

Insgesamt haben wir drei verschiedene Quantenpunktpaare untersucht, um den Effekt von Größe und Geometrie zu erfassen. Wir haben die Elektronenstruktur mit höchster Präzision berechnet und die Bewegungen der Elektronen in Echtzeit bei einer Auflösung von Femtosekunden (10-15 s) simuliert.

Die Ergebnisse sind auch für die experimentelle Forschung und Entwicklung in vielen Anwendungsfeldern sehr nützlich, zum Beispiel für die Entwicklung von Qubits oder als Baustein für die so genannte Photokatalyse, bei der mit Sonnenlicht grüner Wasserstoff erzeugt wird. „Wir arbeiten stetig daran, unsere Modelle hin zu noch realistischeren Beschreibungen von Quantenpunkten zu erweitern,“ sagt Bande, „zum Beispiel, um den Einfluss von Temperatur und Umgebung zu erfassen.“

Pascal Krause / First Author of the publication

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.