How quantum dots can "talk" to each other

The illustration shows two quantum dots "communicating" with each other by exchanging light.

The illustration shows two quantum dots "communicating" with each other by exchanging light. © HZB

A group at HZB has worked out theoretically how the communication between two quantum dots can be influenced with light.  The team led by Annika Bande also shows ways to control the transfer of information or energy from one quantum dot to another. To this end, the researchers calculated the electronic structure of two nanocrystals, which act as quantum dots. With the results, the movement of electrons in quantum dots can be simulated in real time.

So-called quantum dots are a new class of materials with many applications. Quantum dots are realized by tiny semiconductor crystals with dimensions in the nanometre range. The optical and electrical properties can be controlled through the size of these crystals. As QLEDs, they are already on the market in the latest generations of TV flat screens, where they ensure particularly brilliant and high-resolution colour reproduction. However, quantum dots are not only used as "dyes", they are also used in solar cells or as semiconductor devices, right up to computational building blocks, the qubits, of a quantum computer.

Now, a team led by Dr. Annika Bande at HZB has extended the understanding of the interaction between several quantum dots with an atomistic view in a theoretical publication. 

Annika Bande heads the "Theory of Electron Dynamics and Spectroscopy" group at HZB and is particularly interested in the origins of quantum physical phenomena. Although quantum dots are extremely tiny nanocrystals, they consist of thousands of atoms with, in turn, multiples of electrons. Even with supercomputers, the electronic structure of such a semiconductor crystal could hardly be calculated, emphasises the theoretical chemist, who recently completed her habilitation at Freie Universität. "But we are developing methods that describe the problem approximately," Bande explains. "In this case, we worked with scaled-down quantum dot versions of only about a hundred atoms, which nonetheless feature  the characteristic properties of real nanocrystals."  

With this approach, after a year and a half of development and in collaboration with Prof. Jean Christophe Tremblay from the CNRS-Université de Lorraine in Metz, we succeeded in simulating the interaction of two quantum dots, each made of hundreds of atoms, which exchange energy with each other. Specifically, we have investigated how these two quantum dots can absorb, exchange and permanently store the energy controlled by light. A first light pulse is used for excitation, while the second light pulse induces the storage.

In total, we investigated three different pairs of quantum dots to capture the effect of size and geometry. We calculated the electronic structure with highest precision and simulated the electronic motion in real time at femtosecond resolution (10-15 s).

The results are also very useful for experimental research and development in many fields of application, for example for the development of qubits or to support photocatalysis, to produce green hydrogen gas by  sunlight. "We are constantly working on extending our models towards even more realistic descriptions of quantum dots," says Bande, "e.g. to capture the influence of temperature and environment."

Pascal Krause / First Author of the publication

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.