Wie Quantenpunkte miteinander „sprechen“ können

Die Illustration zeigt zwei Quantenpunkte, die über Lichtpulse miteinander kommunizieren.

Die Illustration zeigt zwei Quantenpunkte, die über Lichtpulse miteinander kommunizieren. © HZB

Wie sich die Kommunikation zwischen zwei Quantenpunkten mit Licht beeinflussen lässt, hat nun eine Gruppe am HZB theoretisch ausgearbeitet.  Dabei zeigt das Team um Annika Bande auch Wege, um den Informations- bzw. Energieübertrag von einem Quantenpunkt zum anderen zu kontrollieren und zu speichern. Zu diesem Zweck berechneten die Forschenden die Elektronenstruktur von jeweils zwei so genannten Nanokristallen, die als Quantenpunkte fungieren. Mit den Ergebnissen lässt sich die Bewegung von Elektronen in Quantenpunkten in Echtzeit simulieren.

Sogenannte Quantenpunkte sind eine neue Materialklasse mit vielen Anwendungsmöglichkeiten. Um Quantenpunkte zu realisieren, nutzt man winzige Halbleiterkristalle mit Abmessungen im Nanometerbereich. Über die Größe dieser Kristalle lassen sich die optischen und elektrischen Eigenschaften kontrollieren. Als QLEDs sind sie bereits in den neuesten Generationen von Flachbildschirmen auf dem Markt, wo sie für eine besonders brillante und hochaufgelöste Farbwiedergabe sorgen. Doch nicht nur als „Farbstoffe“ werden Quantenpunkte genutzt, sondern sie auch in Solarzellen oder als Halbleiterbauelemente, bis hin zu Rechenbausteinen, den Qubits, in einem Quantencomputer.

Nun hat ein Team um Dr. Annika Bande am HZB mit einer theoretischen Arbeit das Verständnis der Wechselwirkung zwischen mehreren Quantenpunkten mit einer atomistischen Betrachtung erweitert.

Annika Bande leitet am HZB die Gruppe „Theorie der Elektronendynamik und Spektroskopie“ und interessiert sich besonders für die Ursprünge von quantenphysikalischen Phänomenen. Auch wenn es sich bei Quantenpunkten um extrem winzige Nanokristalle handelt, bestehen diese doch aus tausenden von Atomen mit wiederum einem Vielfachen von Elektronen. Selbst mit Supercomputern ließe sich die elektronische Struktur eines solchen Halbleiterkristalls kaum berechnen, betont die theoretische Chemikerin, die erst vor kurzem an der Freien Universität ihre Habilitation abgeschlossen hat. „Wir entwickeln aber Methoden, um das Problem näherungsweise zu beschreiben“, erklärt Bande. „In diesem Fall haben wir im Computer mit verkleinerten Quantenpunktversionen aus nur etwa hundert Atomen gearbeitet, die aber trotzdem die wesentlichen Eigenschaften realer Nanokristalle besitzen."

Mit diesem Ansatz ist es uns nach anderthalb Jahren Entwicklung und in Zusammenarbeit mit Prof. Jean Christophe Tremblay von der CNRS-Université de Lorraine in Metz gelungen, zwei Quantenpunkte aus jeweils hunderten Atomen miteinander Energie austauschen zu lassen. Konkret haben wir untersucht, wie diese zwei Quantenpunkte kontrolliert die Energie des Lichts aufnehmen, austauschen und dauerhaft speichern können.  Dabei dient ein erster Lichtpuls zur Anregung, während der zweite Lichtpuls die Abspeicherung bewirkt.

Insgesamt haben wir drei verschiedene Quantenpunktpaare untersucht, um den Effekt von Größe und Geometrie zu erfassen. Wir haben die Elektronenstruktur mit höchster Präzision berechnet und die Bewegungen der Elektronen in Echtzeit bei einer Auflösung von Femtosekunden (10-15 s) simuliert.

Die Ergebnisse sind auch für die experimentelle Forschung und Entwicklung in vielen Anwendungsfeldern sehr nützlich, zum Beispiel für die Entwicklung von Qubits oder als Baustein für die so genannte Photokatalyse, bei der mit Sonnenlicht grüner Wasserstoff erzeugt wird. „Wir arbeiten stetig daran, unsere Modelle hin zu noch realistischeren Beschreibungen von Quantenpunkten zu erweitern,“ sagt Bande, „zum Beispiel, um den Einfluss von Temperatur und Umgebung zu erfassen.“

Pascal Krause / First Author of the publication

  • Link kopieren

Das könnte Sie auch interessieren

  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Nachricht
    15.10.2025
    Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).
  • Prashanth Menezes erhält VAIBHAV-Stipendium der indischen Regierung
    Nachricht
    09.10.2025
    Prashanth Menezes erhält VAIBHAV-Stipendium der indischen Regierung
    Das indische Ministerium für Wissenschaft und Technologie hat die Empfängerinnen und Empfänger des Vaishvik Bhartiya Vaigyanik (VAIBHAV)-Stipendiums bekannt gegeben, einer Flaggschiff-Initiative zur Förderung der Zusammenarbeit zwischen der indischen Forschungs-Diaspora in den MINT-Fächern und führenden Forschungseinrichtungen in Indien. Zu den Preisträgern 2025 zählt Dr. Prashanth W. Menezes, der am HZB die Abteilung für Materialchemie für Katalyse leitet.